In the present study,a combination of pulsed discharge plasma and TiO2(plasma/TiO2)has been developed in order to study the activity of TiO2by varying the discharge conditions of pulsed voltage,discharge mode,air fl...In the present study,a combination of pulsed discharge plasma and TiO2(plasma/TiO2)has been developed in order to study the activity of TiO2by varying the discharge conditions of pulsed voltage,discharge mode,air flow rate and solution conductivity.Phenol was used as the chemical probe to characterize the activity of TiO2in a pulsed discharge system.The experimental results showed that the phenol removal efficiency could be improved by about 10%by increasing the applied voltage.The phenol removal efficiency for three discharge modes in the plasma-discharge-alone system was found to be highest in the spark mode,followed by the spark–streamer mode and finally the streamer mode.In the plasma/TiO2system,the highest catalytic effect of TiO2was observed in the spark–streamer discharge mode,which may be attributed to the favorable chemical and physical effects from the spark–streamer discharge mode,such as ultraviolet light,O3,H2O2,pyrolysis,shockwaves and high-energy electrons.Meanwhile,the optimal flow rate and conductivity were 0.05 m^3l^(-1)and 10μS cm^(-1),respectively.The main phenolic intermediates were hydroquinone,catechol,and p-benzoquinone during the discharge treatment process.A different phenol degradation pathway was observed in the plasma/TiO2system as compared to plasma alone.Analysis of the reaction intermediates demonstrated that p-benzoquinone reduction was selectively catalyzed on the TiO2surface.The effective decomposition of phenol constant(De)increased from 74.11%to 79.16%when TiO2was added,indicating that higher phenol mineralization was achieved in the plasma/TiO2system.展开更多
基金funded by the Fundamental Research Funds for the Central Universities under Grant(DUT 15QY17)National Natural Science Foundation of China(Project Nos.51477025 and U1462105)
文摘In the present study,a combination of pulsed discharge plasma and TiO2(plasma/TiO2)has been developed in order to study the activity of TiO2by varying the discharge conditions of pulsed voltage,discharge mode,air flow rate and solution conductivity.Phenol was used as the chemical probe to characterize the activity of TiO2in a pulsed discharge system.The experimental results showed that the phenol removal efficiency could be improved by about 10%by increasing the applied voltage.The phenol removal efficiency for three discharge modes in the plasma-discharge-alone system was found to be highest in the spark mode,followed by the spark–streamer mode and finally the streamer mode.In the plasma/TiO2system,the highest catalytic effect of TiO2was observed in the spark–streamer discharge mode,which may be attributed to the favorable chemical and physical effects from the spark–streamer discharge mode,such as ultraviolet light,O3,H2O2,pyrolysis,shockwaves and high-energy electrons.Meanwhile,the optimal flow rate and conductivity were 0.05 m^3l^(-1)and 10μS cm^(-1),respectively.The main phenolic intermediates were hydroquinone,catechol,and p-benzoquinone during the discharge treatment process.A different phenol degradation pathway was observed in the plasma/TiO2system as compared to plasma alone.Analysis of the reaction intermediates demonstrated that p-benzoquinone reduction was selectively catalyzed on the TiO2surface.The effective decomposition of phenol constant(De)increased from 74.11%to 79.16%when TiO2was added,indicating that higher phenol mineralization was achieved in the plasma/TiO2system.