Application of plasma chemistry for gas cleaning is gaining prominence in recent years, mainly from an energy efficiency point of view. In this paper we conducted a comparative study of NO/NOx removal using two differ...Application of plasma chemistry for gas cleaning is gaining prominence in recent years, mainly from an energy efficiency point of view. In this paper we conducted a comparative study of NO/NOx removal using two different types of dielectric barrier discharge electrodes, wire- cylinder reactor, pipe-cylinder reactor. Investigations were first carried out with synthetic gases to obtain the baseline information on the NO/NOx removal with respect to the two geometries studied. Further, experiments were carried out with raw diesel exhaust under loaded condition. A high NOx removal efficiency of 90% was observed for the pipe-cylinder reactor as compared to that of 53.4% for the wire-cylinder reactor. Furthermore, for the same energy consumed per NO molecule (about 73 eV/NO molecule), the removal efficiency increased from 67% for the wire- cylinder to about 98% for the pipe-cylinder which was quite appreciable.展开更多
To achieve an atmospheric pressure glow discharge(APGD)in air and modify the surface of polyester thread using plasma,the electric field distribution and discharge characteristics under different conditions were stu...To achieve an atmospheric pressure glow discharge(APGD)in air and modify the surface of polyester thread using plasma,the electric field distribution and discharge characteristics under different conditions were studied.We found that the region with a strong electric field,which was formed in a tiny gap between two electrodes constituting a line-line contact electrode structure,provided the initial electron for the entire discharge process.Thus,the discharge voltage was reduced.The dielectric barrier of the line-line contact electrodes can inhibit the generation of secondary electrons.Thus,the transient current pulse discharge was reduced significantly,and an APGD in air was achieved.We designed double layer line-line contact electrodes,which can generate the APGD on the surface of a material under treatment directly.A noticeable change in the surface morphology of polyester fiber was visualized with the aid of a scanning electron microscope(SEM).Two electrode structures-the multi-row line-line and double-helix line-line contact electrodes-were designed.A large area of the APGD plasma with flat and curved surfaces can be formed in air using these contact electrodes.This can improve the efficiency of surface treatment and is significant for the application of the APGD plasma in industries.展开更多
During discharge, appropriately changing the development paths of electron avalanches and increasing the number of initial electrons can effectively inhibit the formation of filamentary discharge. Based on the aforeme...During discharge, appropriately changing the development paths of electron avalanches and increasing the number of initial electrons can effectively inhibit the formation of filamentary discharge. Based on the aforementioned phenomenon, we propose a method of using microdischarge electrodes to produce a macroscopic discharge phenomenon. In the form of an asymmetric structure composed of a carbon fiber electrode, an electrode structure of carbon fiber spiral-contact type is designed to achieve an atmospheric pressure glow discharge in air, which is characterized by low discharge voltage, low energy consumption, good diffusion and less ozone generation.展开更多
As a new type of NO removal system, NO reduction in N_2-NO plasma was applied to solve the difficulties in the traditional methods, such as higher energy-consumption, larger equipment size and high cost, and so on. Us...As a new type of NO removal system, NO reduction in N_2-NO plasma was applied to solve the difficulties in the traditional methods, such as higher energy-consumption, larger equipment size and high cost, and so on. Using the experimental NO reduction system with single-pair electrode tip discharge structure, the NO reduction characteristics of N_2-NO system were revealed to guide the engineering practice; the results of NO reduction with single-pair electrode tip discharge plasma also have the same instructive meaning to the NO reduction with multi-pair electrode tip discharge plasma. The amount of both active N atom and NO removal rate increased with the distance l_g increasing between the two electrode tips and then dropped when the distance exceeded a certain value. The NO removal rate increased while the voltage between two electrode tips or the resident time of gas flow increased. The distance is a key geometrical variable factor that can determine the intensity of electric field between two electrode tips and the resident time of gas. In this paper, the effects of the dielectric features on NO reduction using dielectric-barrier discharge plasma system were also studied. The results of NO removal rate with different dielectrics such as Al_2O_3, CaO, MgO and glass showed that the electric field intensity is different with different dielectric, because it brings different energy to particles in discharge room and thus it causes different NO removal rate.展开更多
The non-inductive plasma current startup is an important motivation in SUNIST spherical tokamak. In the recent experiment, the magnetron microwave system of 100 kW and 2.45 GHz has been used to the ECR plasma current ...The non-inductive plasma current startup is an important motivation in SUNIST spherical tokamak. In the recent experiment, the magnetron microwave system of 100 kW and 2.45 GHz has been used to the ECR plasma current startup. Besides the toroidal field, a vertical field was applied to generate preliminary toroidal plasma current without the action of the central solenoid. As the evidence of plasma current startup with the effect of vertical field drift, the direction of plasma current is changed when the direction of vertical field changes during the ECR plasma current startup discharge. We also observed a maximum plasma current by scanning vertical field in both directions. Additionally, we used electrode discharge to assist the ECR plasma current startup.展开更多
文摘Application of plasma chemistry for gas cleaning is gaining prominence in recent years, mainly from an energy efficiency point of view. In this paper we conducted a comparative study of NO/NOx removal using two different types of dielectric barrier discharge electrodes, wire- cylinder reactor, pipe-cylinder reactor. Investigations were first carried out with synthetic gases to obtain the baseline information on the NO/NOx removal with respect to the two geometries studied. Further, experiments were carried out with raw diesel exhaust under loaded condition. A high NOx removal efficiency of 90% was observed for the pipe-cylinder reactor as compared to that of 53.4% for the wire-cylinder reactor. Furthermore, for the same energy consumed per NO molecule (about 73 eV/NO molecule), the removal efficiency increased from 67% for the wire- cylinder to about 98% for the pipe-cylinder which was quite appreciable.
文摘To achieve an atmospheric pressure glow discharge(APGD)in air and modify the surface of polyester thread using plasma,the electric field distribution and discharge characteristics under different conditions were studied.We found that the region with a strong electric field,which was formed in a tiny gap between two electrodes constituting a line-line contact electrode structure,provided the initial electron for the entire discharge process.Thus,the discharge voltage was reduced.The dielectric barrier of the line-line contact electrodes can inhibit the generation of secondary electrons.Thus,the transient current pulse discharge was reduced significantly,and an APGD in air was achieved.We designed double layer line-line contact electrodes,which can generate the APGD on the surface of a material under treatment directly.A noticeable change in the surface morphology of polyester fiber was visualized with the aid of a scanning electron microscope(SEM).Two electrode structures-the multi-row line-line and double-helix line-line contact electrodes-were designed.A large area of the APGD plasma with flat and curved surfaces can be formed in air using these contact electrodes.This can improve the efficiency of surface treatment and is significant for the application of the APGD plasma in industries.
基金Supported by the National Natural Science Foundation of China under Grant No 51577011
文摘During discharge, appropriately changing the development paths of electron avalanches and increasing the number of initial electrons can effectively inhibit the formation of filamentary discharge. Based on the aforementioned phenomenon, we propose a method of using microdischarge electrodes to produce a macroscopic discharge phenomenon. In the form of an asymmetric structure composed of a carbon fiber electrode, an electrode structure of carbon fiber spiral-contact type is designed to achieve an atmospheric pressure glow discharge in air, which is characterized by low discharge voltage, low energy consumption, good diffusion and less ozone generation.
文摘As a new type of NO removal system, NO reduction in N_2-NO plasma was applied to solve the difficulties in the traditional methods, such as higher energy-consumption, larger equipment size and high cost, and so on. Using the experimental NO reduction system with single-pair electrode tip discharge structure, the NO reduction characteristics of N_2-NO system were revealed to guide the engineering practice; the results of NO reduction with single-pair electrode tip discharge plasma also have the same instructive meaning to the NO reduction with multi-pair electrode tip discharge plasma. The amount of both active N atom and NO removal rate increased with the distance l_g increasing between the two electrode tips and then dropped when the distance exceeded a certain value. The NO removal rate increased while the voltage between two electrode tips or the resident time of gas flow increased. The distance is a key geometrical variable factor that can determine the intensity of electric field between two electrode tips and the resident time of gas. In this paper, the effects of the dielectric features on NO reduction using dielectric-barrier discharge plasma system were also studied. The results of NO removal rate with different dielectrics such as Al_2O_3, CaO, MgO and glass showed that the electric field intensity is different with different dielectric, because it brings different energy to particles in discharge room and thus it causes different NO removal rate.
基金supported by International Atomic Energy Agency(Research contract No.12935/R0)JSPS-CAS Core-University Program on Plasma and Nuclear Fusion and the National Natural Science Foundation of China(Grant No.10275041 and 10375089)
文摘The non-inductive plasma current startup is an important motivation in SUNIST spherical tokamak. In the recent experiment, the magnetron microwave system of 100 kW and 2.45 GHz has been used to the ECR plasma current startup. Besides the toroidal field, a vertical field was applied to generate preliminary toroidal plasma current without the action of the central solenoid. As the evidence of plasma current startup with the effect of vertical field drift, the direction of plasma current is changed when the direction of vertical field changes during the ECR plasma current startup discharge. We also observed a maximum plasma current by scanning vertical field in both directions. Additionally, we used electrode discharge to assist the ECR plasma current startup.