期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
DISCONTINUITY-CAPTURING FINITE ELEMENT COMPUTATION OF UNSTEADY FLOW WITH ADAPTIVE UNSTRUCTURED MESH
1
作者 董根金 陆夕云 庄礼贤 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2004年第4期347-353,共7页
A discontinuity-capturing scheme of finite element method(FEM)is proposed.The unstructured-grid technique combined with a new type of adaptive mesh approach is developed for both compressible and incompressible unstea... A discontinuity-capturing scheme of finite element method(FEM)is proposed.The unstructured-grid technique combined with a new type of adaptive mesh approach is developed for both compressible and incompressible unsteady flows,which exhibits the capability of capturing the shock waves and/or thin shear layers accurately in an unsteady viscous flow at high Reynolds number. In particular,a new testing variable,i.e.,the disturbed kinetic energy E,is suggested and used in the adaptive mesh computation,which is universally applicable to the capturing of both shock waves and shear layers in the inviscid flow and viscous flow at high Reynolds number.Based on several calculated examples,this approach has been proved to be effective and efficient for the calculations of compressible and incompressible flows. 展开更多
关键词 finite element method unstructured and adaptive mesh discontinuity capture unsteady viscous flow
下载PDF
A Discontinuity and Cusp Capturing PINN for Stokes Interface Problems with Discontinuous Viscosity and Singular Forces
2
作者 Yu-Hau Tseng Ming-Chih Lai 《Annals of Applied Mathematics》 2023年第4期385-405,共21页
In this paper,we present a discontinuity and cusp capturing physicsinformed neural network(PINN)to solve Stokes equations with a piecewiseconstant viscosity and singular force along an interface.We first reformulate t... In this paper,we present a discontinuity and cusp capturing physicsinformed neural network(PINN)to solve Stokes equations with a piecewiseconstant viscosity and singular force along an interface.We first reformulate the governing equations in each fluid domain separately and replace the singular force effect with the traction balance equation between solutions in two sides along the interface.Since the pressure is discontinuous and the velocity has discontinuous derivatives across the interface,we hereby use a network consisting of two fully-connected sub-networks that approximate the pressure and velocity,respectively.The two sub-networks share the same primary coordinate input arguments but with different augmented feature inputs.These two augmented inputs provide the interface information,so we assume that a level set function is given and its zero level set indicates the position of the interface.The pressure sub-network uses an indicator function as an augmented input to capture the function discontinuity,while the velocity sub-network uses a cusp-enforced level set function to capture the derivative discontinuities via the traction balance equation.We perform a series of numerical experiments to solve two-and three-dimensional Stokes interface problems and perform an accuracy comparison with the augmented immersed interface methods in literature.Our results indicate that even a shallow network with a moderate number of neurons and sufficient training data points can achieve prediction accuracy comparable to that of immersed interface methods. 展开更多
关键词 Stokes interface problem immersed interface method level set function physics-informed neural network discontinuity capturing shallow neural network cuspcapturing neural network
原文传递
Multiderivative Combined Dissipative Compact Scheme Satisfying Geometric Conservation Law III: Characteristic-Wise Hybrid Method 被引量:1
3
作者 Yi Jiang Meiliang Mao +1 位作者 Xiaogang Deng Huayong Liu 《Advances in Applied Mathematics and Mechanics》 SCIE 2022年第2期415-441,共27页
Based on newly developed weight-based smoothness detectors and non-linear interpolations designed to capture discontinuities for the multiderivative com-bined dissipative compact scheme(MDCS),hybrid linear and nonline... Based on newly developed weight-based smoothness detectors and non-linear interpolations designed to capture discontinuities for the multiderivative com-bined dissipative compact scheme(MDCS),hybrid linear and nonlinear interpolations are proposed to form hybrid MDCS.These detectors are derived from the weights used for the nonlinear interpolations and can provide suitable switches between the linear and the nonlinear schemes to realize the characteristics for the hybrid MDCS of capturing discontinuities and maintaining high resolution in the region without large discontinuities.To save computational cost,the nonlinear scheme with characteris-tic decomposition is only applied in the detected discontinuities region by specially designed hybrid strategy.Typical tests show that the hybrid MDCS is capable of cap-turing discontinuities and maintaining high resolution power for the smooth region at the same time.With the satisfaction of the geometric conservative law(GCL),the MDCS is further applied on curvilinear mesh to present its promising capability of handling pragmatic simulations. 展开更多
关键词 Hybrid multiderivative combined dissipative compact scheme high resolution power discontinuities capturing geometric conservation law curvilinear mesh complex geometry.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部