A discontinuous Galerkin finite element method (DG-FEM) is developed for solving the axisymmetric Euler equations based on two-dimensional conservation laws. The method is used to simulate the unsteady-state underex...A discontinuous Galerkin finite element method (DG-FEM) is developed for solving the axisymmetric Euler equations based on two-dimensional conservation laws. The method is used to simulate the unsteady-state underexpanded axisymmetric jet. Several flow property distributions along the jet axis, including density, pres- sure and Mach number are obtained and the qualitative flowfield structures of interest are well captured using the proposed method, including shock waves, slipstreams, traveling vortex ring and multiple Mach disks. Two Mach disk locations agree well with computational and experimental measurement results. It indicates that the method is robust and efficient for solving the unsteady-state underexpanded axisymmetric jet.展开更多
A numerical simulation of the toroidal shock wave focusing in a co-axial cylindrical shock tube is inves- tigated by using discontinuous Galerkin (DG) finite element method to solve the axisymmetric Euler equations....A numerical simulation of the toroidal shock wave focusing in a co-axial cylindrical shock tube is inves- tigated by using discontinuous Galerkin (DG) finite element method to solve the axisymmetric Euler equations. For validating the numerical method, the shock-tube problem with exact solution is computed, and the computed results agree well with the exact cases. Then, several cases with higher incident Mach numbers varying from 2.0 to 5.0 are simulated. Simulation results show that complicated flow-field structures of toroidal shock wave diffraction, reflection, and focusing in a co-axial cylindrical shock tube can be obtained at different incident Mach numbers and the numerical solutions appear steep gradients near the focusing point, which illustrates the DG method has higher accuracy and better resolution near the discontinuous point. Moreover, the focusing peak pres- sure with different grid scales is compared.展开更多
In this paper,a new strategy for a sub-element-based shock capturing for discontinuous Galerkin(DG)approximations is presented.The idea is to interpret a DG element as a col-lection of data and construct a hierarchy o...In this paper,a new strategy for a sub-element-based shock capturing for discontinuous Galerkin(DG)approximations is presented.The idea is to interpret a DG element as a col-lection of data and construct a hierarchy of low-to-high-order discretizations on this set of data,including a first-order finite volume scheme up to the full-order DG scheme.The dif-ferent DG discretizations are then blended according to sub-element troubled cell indicators,resulting in a final discretization that adaptively blends from low to high order within a single DG element.The goal is to retain as much high-order accuracy as possible,even in simula-tions with very strong shocks,as,e.g.,presented in the Sedov test.The framework retains the locality of the standard DG scheme and is hence well suited for a combination with adaptive mesh refinement and parallel computing.The numerical tests demonstrate the sub-element adaptive behavior of the new shock capturing approach and its high accuracy.展开更多
The complex structure and strong heterogeneity of advanced nuclear reactor systems pose challenges for high-fidelity neutron-shielding calculations. Unstructured meshes exhibit strong geometric adaptability and can ov...The complex structure and strong heterogeneity of advanced nuclear reactor systems pose challenges for high-fidelity neutron-shielding calculations. Unstructured meshes exhibit strong geometric adaptability and can overcome the deficiencies of conventionally structured meshes in complex geometry modeling. A multithreaded parallel upwind sweep algorithm for S_(N) transport was proposed to achieve a more accurate geometric description and improve the computational efficiency. The spatial variables were discretized using the standard discontinuous Galerkin finite-element method. The angular flux transmission between neighboring meshes was handled using an upwind scheme. In addition, a combination of a mesh transport sweep and angular iterations was realized using a multithreaded parallel technique. The algorithm was implemented in the 2D/3D S_(N) transport code ThorSNIPE, and numerical evaluations were conducted using three typical benchmark problems:IAEA, Kobayashi-3i, and VENUS-3. These numerical results indicate that the multithreaded parallel upwind sweep algorithm can achieve high computational efficiency. ThorSNIPE, with a multithreaded parallel upwind sweep algorithm, has good reliability, stability, and high efficiency, making it suitable for complex shielding calculations.展开更多
As the number of automobiles continues to increase year after year,the associated problem of traffic congestion has become a serious societal issue.Initiatives to mitigate this problem have considered methods for opti...As the number of automobiles continues to increase year after year,the associated problem of traffic congestion has become a serious societal issue.Initiatives to mitigate this problem have considered methods for optimizing traffic volumes in wide-area road networks,and traffic-flow simulation has become a focus of interest as a technique for advance characterization of such strategies.Classes of models commonly used for traffic-flow simulations include microscopic models based on discrete vehicle representations,macroscopic models that describe entire traffic-flow systems in terms of average vehicle densities and velocities,and mesoscopic models and hybrid(or multiscale)models incorporating both microscopic and macroscopic features.Because traffic-flow simulations are designed to model traffic systems under a variety of conditions,their underlyingmodelsmust be capable of rapidly capturing the consequences of minor variations in operating environments.In other words,the computation speed of macroscopic models and the precise representation of microscopic models are needed simultaneously.Thus,in this study we propose a multiscale model that combines a microscopic model—for detailed analysis of subregions containing traffic congestion bottlenecks or other localized phenomena of interest-with a macroscopic model enabling simulation of wide target areas at a modest computational cost.In addition,to ensure analytical stability with robustness in the presence of discontinuities,we discretize our macroscopic model using a discontinuous Galerkin finite element method(DGFEM),while to conjoin microscopic and macroscopic models,we use a generating/absorbing sponge layer,a technique widely used for numerical analysis of long-wavelength phenomena in shallow water,to enable traffic-flow simulations with stable input and output regions.展开更多
The present study regards the numerical approximation of solutions of systems of Korteweg-de Vries type,coupled through their nonlinear terms.In our previous work[9],we constructed conservative and dissipative finite ...The present study regards the numerical approximation of solutions of systems of Korteweg-de Vries type,coupled through their nonlinear terms.In our previous work[9],we constructed conservative and dissipative finite element methods for these systems and presented a priori error estimates for the semidiscrete schemes.In this sequel,we present a posteriori error estimates for the semidiscrete and fully discrete approximations introduced in[9].The key tool employed to effect our analysis is the dispersive reconstruction devel-oped by Karakashian and Makridakis[20]for related discontinuous Galerkin methods.We conclude by providing a set of numerical experiments designed to validate the a posteriori theory and explore the effectivity of the resulting error indicators.展开更多
时域离散伽辽金法(Discontinuous Galerkin Time Domain,DGTD)同时具有时域有限元算法(Finite Element Time Domain,FETD)非结构网格剖分和时域有限差分算法(Finite Difference Time Domain,FDTD)显式迭代的优点,是一种非常有前途的电...时域离散伽辽金法(Discontinuous Galerkin Time Domain,DGTD)同时具有时域有限元算法(Finite Element Time Domain,FETD)非结构网格剖分和时域有限差分算法(Finite Difference Time Domain,FDTD)显式迭代的优点,是一种非常有前途的电磁计算方法,该文首先描述了基于矢量基函数的时域离散伽辽金法的基本原理。然后,给出了DGTD处理散射问题时平面波入射加入的具体实现方法。最后,给出了金属球、介质球和金属弹头宽带散射的算例,算例结果的比较表明了该文算法的正确性和有效性。该文的研究,为复杂目标雷达散射截面RCS的准确预估打下了坚实的基础。展开更多
文摘A discontinuous Galerkin finite element method (DG-FEM) is developed for solving the axisymmetric Euler equations based on two-dimensional conservation laws. The method is used to simulate the unsteady-state underexpanded axisymmetric jet. Several flow property distributions along the jet axis, including density, pres- sure and Mach number are obtained and the qualitative flowfield structures of interest are well captured using the proposed method, including shock waves, slipstreams, traveling vortex ring and multiple Mach disks. Two Mach disk locations agree well with computational and experimental measurement results. It indicates that the method is robust and efficient for solving the unsteady-state underexpanded axisymmetric jet.
基金Supported by the National Natural Science Foundation of China(50976072,51106099,10902070)the Leading Academic Discipline Project of Shanghai Municipal Education Commission(J50501)the Science Foundation for the Excellent Youth Scholar of Higher Education of Shanghai(slg09003)~~
文摘A numerical simulation of the toroidal shock wave focusing in a co-axial cylindrical shock tube is inves- tigated by using discontinuous Galerkin (DG) finite element method to solve the axisymmetric Euler equations. For validating the numerical method, the shock-tube problem with exact solution is computed, and the computed results agree well with the exact cases. Then, several cases with higher incident Mach numbers varying from 2.0 to 5.0 are simulated. Simulation results show that complicated flow-field structures of toroidal shock wave diffraction, reflection, and focusing in a co-axial cylindrical shock tube can be obtained at different incident Mach numbers and the numerical solutions appear steep gradients near the focusing point, which illustrates the DG method has higher accuracy and better resolution near the discontinuous point. Moreover, the focusing peak pres- sure with different grid scales is compared.
文摘In this paper,a new strategy for a sub-element-based shock capturing for discontinuous Galerkin(DG)approximations is presented.The idea is to interpret a DG element as a col-lection of data and construct a hierarchy of low-to-high-order discretizations on this set of data,including a first-order finite volume scheme up to the full-order DG scheme.The dif-ferent DG discretizations are then blended according to sub-element troubled cell indicators,resulting in a final discretization that adaptively blends from low to high order within a single DG element.The goal is to retain as much high-order accuracy as possible,even in simula-tions with very strong shocks,as,e.g.,presented in the Sedov test.The framework retains the locality of the standard DG scheme and is hence well suited for a combination with adaptive mesh refinement and parallel computing.The numerical tests demonstrate the sub-element adaptive behavior of the new shock capturing approach and its high accuracy.
文摘The complex structure and strong heterogeneity of advanced nuclear reactor systems pose challenges for high-fidelity neutron-shielding calculations. Unstructured meshes exhibit strong geometric adaptability and can overcome the deficiencies of conventionally structured meshes in complex geometry modeling. A multithreaded parallel upwind sweep algorithm for S_(N) transport was proposed to achieve a more accurate geometric description and improve the computational efficiency. The spatial variables were discretized using the standard discontinuous Galerkin finite-element method. The angular flux transmission between neighboring meshes was handled using an upwind scheme. In addition, a combination of a mesh transport sweep and angular iterations was realized using a multithreaded parallel technique. The algorithm was implemented in the 2D/3D S_(N) transport code ThorSNIPE, and numerical evaluations were conducted using three typical benchmark problems:IAEA, Kobayashi-3i, and VENUS-3. These numerical results indicate that the multithreaded parallel upwind sweep algorithm can achieve high computational efficiency. ThorSNIPE, with a multithreaded parallel upwind sweep algorithm, has good reliability, stability, and high efficiency, making it suitable for complex shielding calculations.
基金This work was supported in part by The Japan Society for the Promotion of Science(JSPS)KAKENHI Grant Nos.JP15H01785 and JP19H02377.
文摘As the number of automobiles continues to increase year after year,the associated problem of traffic congestion has become a serious societal issue.Initiatives to mitigate this problem have considered methods for optimizing traffic volumes in wide-area road networks,and traffic-flow simulation has become a focus of interest as a technique for advance characterization of such strategies.Classes of models commonly used for traffic-flow simulations include microscopic models based on discrete vehicle representations,macroscopic models that describe entire traffic-flow systems in terms of average vehicle densities and velocities,and mesoscopic models and hybrid(or multiscale)models incorporating both microscopic and macroscopic features.Because traffic-flow simulations are designed to model traffic systems under a variety of conditions,their underlyingmodelsmust be capable of rapidly capturing the consequences of minor variations in operating environments.In other words,the computation speed of macroscopic models and the precise representation of microscopic models are needed simultaneously.Thus,in this study we propose a multiscale model that combines a microscopic model—for detailed analysis of subregions containing traffic congestion bottlenecks or other localized phenomena of interest-with a macroscopic model enabling simulation of wide target areas at a modest computational cost.In addition,to ensure analytical stability with robustness in the presence of discontinuities,we discretize our macroscopic model using a discontinuous Galerkin finite element method(DGFEM),while to conjoin microscopic and macroscopic models,we use a generating/absorbing sponge layer,a technique widely used for numerical analysis of long-wavelength phenomena in shallow water,to enable traffic-flow simulations with stable input and output regions.
基金This work was supported in part by the National Science Foundation under grant DMS-1620288。
文摘The present study regards the numerical approximation of solutions of systems of Korteweg-de Vries type,coupled through their nonlinear terms.In our previous work[9],we constructed conservative and dissipative finite element methods for these systems and presented a priori error estimates for the semidiscrete schemes.In this sequel,we present a posteriori error estimates for the semidiscrete and fully discrete approximations introduced in[9].The key tool employed to effect our analysis is the dispersive reconstruction devel-oped by Karakashian and Makridakis[20]for related discontinuous Galerkin methods.We conclude by providing a set of numerical experiments designed to validate the a posteriori theory and explore the effectivity of the resulting error indicators.
文摘时域离散伽辽金法(Discontinuous Galerkin Time Domain,DGTD)同时具有时域有限元算法(Finite Element Time Domain,FETD)非结构网格剖分和时域有限差分算法(Finite Difference Time Domain,FDTD)显式迭代的优点,是一种非常有前途的电磁计算方法,该文首先描述了基于矢量基函数的时域离散伽辽金法的基本原理。然后,给出了DGTD处理散射问题时平面波入射加入的具体实现方法。最后,给出了金属球、介质球和金属弹头宽带散射的算例,算例结果的比较表明了该文算法的正确性和有效性。该文的研究,为复杂目标雷达散射截面RCS的准确预估打下了坚实的基础。