期刊文献+
共找到103篇文章
< 1 2 6 >
每页显示 20 50 100
NUMERICAL SIMULATION OF UNSTEADY-STATE UNDEREXPANDED JET USING DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD 被引量:3
1
作者 陈二云 李志刚 +3 位作者 马大为 乐贵高 赵改平 任杰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第2期89-93,共5页
A discontinuous Galerkin finite element method (DG-FEM) is developed for solving the axisymmetric Euler equations based on two-dimensional conservation laws. The method is used to simulate the unsteady-state underex... A discontinuous Galerkin finite element method (DG-FEM) is developed for solving the axisymmetric Euler equations based on two-dimensional conservation laws. The method is used to simulate the unsteady-state underexpanded axisymmetric jet. Several flow property distributions along the jet axis, including density, pres- sure and Mach number are obtained and the qualitative flowfield structures of interest are well captured using the proposed method, including shock waves, slipstreams, traveling vortex ring and multiple Mach disks. Two Mach disk locations agree well with computational and experimental measurement results. It indicates that the method is robust and efficient for solving the unsteady-state underexpanded axisymmetric jet. 展开更多
关键词 jets computational fluid dynamics multiple Mach disks vortex ring discontinuous galerkin finite element method
下载PDF
NUMERICAL INVESTIGATION OF TOROIDAL SHOCK WAVES FOCUSING USING DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD 被引量:2
2
作者 陈二云 赵改平 +1 位作者 卓文涛 杨爱玲 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第1期9-15,共7页
A numerical simulation of the toroidal shock wave focusing in a co-axial cylindrical shock tube is inves- tigated by using discontinuous Galerkin (DG) finite element method to solve the axisymmetric Euler equations.... A numerical simulation of the toroidal shock wave focusing in a co-axial cylindrical shock tube is inves- tigated by using discontinuous Galerkin (DG) finite element method to solve the axisymmetric Euler equations. For validating the numerical method, the shock-tube problem with exact solution is computed, and the computed results agree well with the exact cases. Then, several cases with higher incident Mach numbers varying from 2.0 to 5.0 are simulated. Simulation results show that complicated flow-field structures of toroidal shock wave diffraction, reflection, and focusing in a co-axial cylindrical shock tube can be obtained at different incident Mach numbers and the numerical solutions appear steep gradients near the focusing point, which illustrates the DG method has higher accuracy and better resolution near the discontinuous point. Moreover, the focusing peak pres- sure with different grid scales is compared. 展开更多
关键词 shock wave focusing spherical double Math reflection discontinuous galerkin finite element method
下载PDF
A Sub-element Adaptive Shock Capturing Approach for Discontinuous Galerkin Methods 被引量:2
3
作者 Johannes Markert Gregor Gassner Stefanie Walch 《Communications on Applied Mathematics and Computation》 2023年第2期679-721,共43页
In this paper,a new strategy for a sub-element-based shock capturing for discontinuous Galerkin(DG)approximations is presented.The idea is to interpret a DG element as a col-lection of data and construct a hierarchy o... In this paper,a new strategy for a sub-element-based shock capturing for discontinuous Galerkin(DG)approximations is presented.The idea is to interpret a DG element as a col-lection of data and construct a hierarchy of low-to-high-order discretizations on this set of data,including a first-order finite volume scheme up to the full-order DG scheme.The dif-ferent DG discretizations are then blended according to sub-element troubled cell indicators,resulting in a final discretization that adaptively blends from low to high order within a single DG element.The goal is to retain as much high-order accuracy as possible,even in simula-tions with very strong shocks,as,e.g.,presented in the Sedov test.The framework retains the locality of the standard DG scheme and is hence well suited for a combination with adaptive mesh refinement and parallel computing.The numerical tests demonstrate the sub-element adaptive behavior of the new shock capturing approach and its high accuracy. 展开更多
关键词 High-order methods discontinuous galerkin spectral element method finite volume method Shock capturing ASTROPHYSICS Stellar physics
下载PDF
A multithreaded parallel upwind sweep algorithm for the S_(N) transport equations discretized with discontinuous finite elements
4
作者 Zhi‑Wei Zong Mao‑Song Cheng +1 位作者 Ying‑Chi Yu Zhi‑Min Dai 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第12期229-241,共13页
The complex structure and strong heterogeneity of advanced nuclear reactor systems pose challenges for high-fidelity neutron-shielding calculations. Unstructured meshes exhibit strong geometric adaptability and can ov... The complex structure and strong heterogeneity of advanced nuclear reactor systems pose challenges for high-fidelity neutron-shielding calculations. Unstructured meshes exhibit strong geometric adaptability and can overcome the deficiencies of conventionally structured meshes in complex geometry modeling. A multithreaded parallel upwind sweep algorithm for S_(N) transport was proposed to achieve a more accurate geometric description and improve the computational efficiency. The spatial variables were discretized using the standard discontinuous Galerkin finite-element method. The angular flux transmission between neighboring meshes was handled using an upwind scheme. In addition, a combination of a mesh transport sweep and angular iterations was realized using a multithreaded parallel technique. The algorithm was implemented in the 2D/3D S_(N) transport code ThorSNIPE, and numerical evaluations were conducted using three typical benchmark problems:IAEA, Kobayashi-3i, and VENUS-3. These numerical results indicate that the multithreaded parallel upwind sweep algorithm can achieve high computational efficiency. ThorSNIPE, with a multithreaded parallel upwind sweep algorithm, has good reliability, stability, and high efficiency, making it suitable for complex shielding calculations. 展开更多
关键词 Shielding calculation Discrete ordinates method discontinuous galerkin finite element method Unstructured meshes
下载PDF
A Posteriori Error Estimates for Finite Element Methods for Systems of Nonlinear,Dispersive Equations
5
作者 Ohannes A.Karakashian Michael M.Wise 《Communications on Applied Mathematics and Computation》 2022年第3期823-854,共32页
The present study regards the numerical approximation of solutions of systems of Korteweg-de Vries type,coupled through their nonlinear terms.In our previous work[9],we constructed conservative and dissipative finite ... The present study regards the numerical approximation of solutions of systems of Korteweg-de Vries type,coupled through their nonlinear terms.In our previous work[9],we constructed conservative and dissipative finite element methods for these systems and presented a priori error estimates for the semidiscrete schemes.In this sequel,we present a posteriori error estimates for the semidiscrete and fully discrete approximations introduced in[9].The key tool employed to effect our analysis is the dispersive reconstruction devel-oped by Karakashian and Makridakis[20]for related discontinuous Galerkin methods.We conclude by providing a set of numerical experiments designed to validate the a posteriori theory and explore the effectivity of the resulting error indicators. 展开更多
关键词 finite element methods discontinuous galerkin methods Korteweg-de Vries equation A posteriori error estimates Conservation laws Nonlinear equations Dispersive equations
下载PDF
Numerical Analysis of Diffusion and Heat Conduction Problems by Means of Discontinuous Galerkin Methods in Space and Time
6
作者 Sandra Carstens Detlef Kuhl 《材料科学与工程(中英文B版)》 2012年第1期70-80,共11页
关键词 时空有限元方法 反应扩散过程 时间积分 空间离散 热传导问题 数值分析 间断 galerkin
下载PDF
Discontinuous-Galerkin-Based Analysis of Traffic Flow Model Connected with Multi-Agent Traffic Model
7
作者 Rina Okuyama Naoto Mitsume +1 位作者 Hideki Fujii Hideaki Uchida 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第9期949-965,共17页
As the number of automobiles continues to increase year after year,the associated problem of traffic congestion has become a serious societal issue.Initiatives to mitigate this problem have considered methods for opti... As the number of automobiles continues to increase year after year,the associated problem of traffic congestion has become a serious societal issue.Initiatives to mitigate this problem have considered methods for optimizing traffic volumes in wide-area road networks,and traffic-flow simulation has become a focus of interest as a technique for advance characterization of such strategies.Classes of models commonly used for traffic-flow simulations include microscopic models based on discrete vehicle representations,macroscopic models that describe entire traffic-flow systems in terms of average vehicle densities and velocities,and mesoscopic models and hybrid(or multiscale)models incorporating both microscopic and macroscopic features.Because traffic-flow simulations are designed to model traffic systems under a variety of conditions,their underlyingmodelsmust be capable of rapidly capturing the consequences of minor variations in operating environments.In other words,the computation speed of macroscopic models and the precise representation of microscopic models are needed simultaneously.Thus,in this study we propose a multiscale model that combines a microscopic model—for detailed analysis of subregions containing traffic congestion bottlenecks or other localized phenomena of interest-with a macroscopic model enabling simulation of wide target areas at a modest computational cost.In addition,to ensure analytical stability with robustness in the presence of discontinuities,we discretize our macroscopic model using a discontinuous Galerkin finite element method(DGFEM),while to conjoin microscopic and macroscopic models,we use a generating/absorbing sponge layer,a technique widely used for numerical analysis of long-wavelength phenomena in shallow water,to enable traffic-flow simulations with stable input and output regions. 展开更多
关键词 discontinuous galerkin finite element method multiscale modeling traffic flow
下载PDF
FINITE ELEMENT AND DISCONTINUOUS GALERKIN METHOD FOR STOCHASTIC HELMHOLTZ EQUATION IN TWO-AND THREE-DIMENSIONS 被引量:2
8
作者 Yanzhao Cao Ran Zhang Kai Zhang 《Journal of Computational Mathematics》 SCIE CSCD 2008年第5期702-715,共14页
In this paper, we consider the finite element method and discontinuous Galerkin method for the stochastic Helmholtz equation in R^d (d = 2, 3). Convergence analysis and error estimates are presented for the numerica... In this paper, we consider the finite element method and discontinuous Galerkin method for the stochastic Helmholtz equation in R^d (d = 2, 3). Convergence analysis and error estimates are presented for the numerical solutions. The effects of the noises on the accuracy of the approximations are illustrated. Numerical experiments are carried out to verify our theoretical results. 展开更多
关键词 Stochastic partial differential equation finite element method discontinuous galerkin method Stochastic Helmholtz equation.
原文传递
A combined mixed finite element method and local discontinuous Galerkin method for miscible displacement problem in porous media
9
作者 GUO Hui ZHANG QingHua YANG Yang 《Science China Mathematics》 SCIE 2014年第11期2301-2320,共20页
A combined method consisting of the mixed finite element method for flow and the local discontinuous Galerkin method for transport is introduced for the one-dimensional coupled system of incompressible miscible displa... A combined method consisting of the mixed finite element method for flow and the local discontinuous Galerkin method for transport is introduced for the one-dimensional coupled system of incompressible miscible displacement problem. Optimal error estimates in L∞(0,T;L2) for concentration c,in L2(0,T;L2)for cxand L∞(0,T;L2) for velocity u are derived. The main technical difficulties in the analysis include the treatment of the inter-element jump terms which arise from the discontinuous nature of the numerical method,the nonlinearity,and the coupling of the models. Numerical experiments are performed to verify the theoretical results. Finally,we apply this method to the one-dimensional compressible miscible displacement problem and give the numerical experiments to confirm the efficiency of the scheme. 展开更多
关键词 mixed finite element method local discontinuous galerkin method error estimate miscible displacement problem
原文传递
A Discontinuous Galerkin Finite Element Method without Interior Penalty Terms
10
作者 Fuzheng Gao Xiu Ye Shangyou Zhang 《Advances in Applied Mathematics and Mechanics》 SCIE 2022年第2期299-314,共16页
A conforming discontinuous Galerkinfinite element method was introduced by Ye and Zhang,on simplicial meshes and on polytopal meshes,which has theflexibility of using discontinuous approximation and an ultra simple form... A conforming discontinuous Galerkinfinite element method was introduced by Ye and Zhang,on simplicial meshes and on polytopal meshes,which has theflexibility of using discontinuous approximation and an ultra simple formulation.The main goal of this paper is to improve the above discontinuous Galerkinfinite element method so that it can handle nonhomogeneous Dirichlet boundary conditions effectively.In addition,the method has been generalized in terms of approximation of the weak gradient.Error estimates of optimal order are established for the correspond-ing discontinuousfinite element approximation in both a discrete H1 norm and the L2 norm.Numerical results are presented to confirm the theory. 展开更多
关键词 Nonhomogeneous Dirichlet boundary conditions weak gradient discontinuous galerkin STABILIZER penalty free finite element methods polytopal mesh
原文传递
Time discontinuous Galerkin space-time finite element method for nonlinear Sobolev equations
11
作者 Siriguleng HE Hong LI Yang LIU 《Frontiers of Mathematics in China》 SCIE CSCD 2013年第4期825-836,共12页
This article presents a complete discretization of a nonlinear Sobolev equation using space-time discontinuous Galerkin method that is discontinuous in time and continuous in space. The scheme is formulated by introdu... This article presents a complete discretization of a nonlinear Sobolev equation using space-time discontinuous Galerkin method that is discontinuous in time and continuous in space. The scheme is formulated by introducing the equivalent integral equation of the primal equation. The proposed scheme does not explicitly include the jump terms in time, which represent the discontinuity characteristics of approximate solution. And then the complexity of the theoretical analysis is reduced. The existence and uniqueness of the approximate solution and the stability of the scheme are proved. The optimalorder error estimates in L2 (H1) and L2 (L2) norms are derived. These estimates are valid under weak restrictions on the space-time mesh, namely, without the condition kn ≥ ch2, which is necessary in traditional space-time discontinuous Galerkin methods. Numerical experiments are presented to verify the theoretical results. 展开更多
关键词 Nonlinear Sobolev equation time finite element method optimal error time discontinuous galerkin spaceestimate
原文传递
A DISCONTINUOUS GALERKIN METHOD COMBINED WITH MIXED FINITE ELEMENT FOR SEAWATER INTRUSION PROBLEM
12
作者 Ximeng LIAN Hongxing RUI 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2010年第4期830-845,共16页
Seawater intrusion problem is considered in this paper.Its mathematical model is anonlinear coupled system of partial differential equations with initial boundary problem.It consistsof the water head equation and the ... Seawater intrusion problem is considered in this paper.Its mathematical model is anonlinear coupled system of partial differential equations with initial boundary problem.It consistsof the water head equation and the salt concentration equation.A combined method is developedto approximate the water head equation by mixed finite element method and concentration equationby discontinuous Galerkin method.The scheme is continuous in time and optimal order estimates inH^1-norm and L^2-norm are derived for the errors. 展开更多
关键词 discontinuous galerkin method mixed finite element method seawater intrusion problem.
原文传递
A Posteriori Error Estimates of a Combined Mixed Finite Element and Discontinuous Galerkin Method for a Kind of Compressible Miscible Displacement Problems
13
作者 Jiming Yang Zhiguang Xiong 《Advances in Applied Mathematics and Mechanics》 SCIE 2013年第2期163-179,共17页
Akind of compressiblemiscible displacement problemswhich includemolecular diffusion and dispersion in porous media are investigated.The mixed finite element method is applied to the flow equation,and the transport one... Akind of compressiblemiscible displacement problemswhich includemolecular diffusion and dispersion in porous media are investigated.The mixed finite element method is applied to the flow equation,and the transport one is solved by the symmetric interior penalty discontinuous Galerkin method.Based on a duality argument,employing projection estimates and approximation properties,a posteriori residual-type hp error estimates for the coupled system are presented,which is often used for guiding adaptivity.Comparing with the error analysis carried out by Yang(Int.J.Numer.Meth.Fluids,65(7)(2011),pp.781-797),the current work is more complicated and challenging. 展开更多
关键词 A posteriori error discontinuous galerkin method compressible miscible displacement mixed finite element duality argument
原文传递
起伏地表弹性波传播的间断Galerkin有限元数值模拟方法 被引量:15
14
作者 薛昭 董良国 +1 位作者 李晓波 刘玉柱 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2014年第4期1209-1223,共15页
间断Galerkin有限元法(DG-FEM)作为一种有效的高阶有限元法受到了国内外学者的广泛关注.本文基于任意高阶间断Galerkin有限元法对弹性波方程进行空间离散,并将离散后所得的非齐次线性常微分方程系统齐次化,最后结合针对齐次问题的强稳... 间断Galerkin有限元法(DG-FEM)作为一种有效的高阶有限元法受到了国内外学者的广泛关注.本文基于任意高阶间断Galerkin有限元法对弹性波方程进行空间离散,并将离散后所得的非齐次线性常微分方程系统齐次化,最后结合针对齐次问题的强稳定性保持龙格库塔(SSP Runge-Kutta)算法,将DG-FEM推广至时间任意高阶精度.另外,借鉴近最佳匹配层(NPML)的思想,基于复频移(CFS)拉伸坐标变换推导了一种新的PML吸收边界条件(简称为CFS-NPML),该CFS-NPML能够与DG-FEM算法很好地结合,形成有效的起伏地表地震波传播数值模拟技术.数值试验结果表明,DG-FEM具有高阶精度,可以适应任意复杂起伏地表和复杂构造情况下的弹性波传播数值模拟.同时,CFS-NPML对包括面波等震相的人为边界反射都具有良好的吸收效果. 展开更多
关键词 间断galerkin有限元法 起伏地表 弹性波传播 任意高阶Runge-Kutta时间格式 CFS-NPML
下载PDF
任意单元间断Galerkin有限元计算方法研究 被引量:15
15
作者 贺立新 张来平 张涵信 《空气动力学学报》 EI CSCD 北大核心 2007年第2期157-162,共6页
基于龙格库塔间断Galerkin(RKDG)有限元法的构造思想,通过局部坐标变换,发展了非正交单元DG有限元计算方法;借鉴非结构网格有限体积隐式计算方法,发展了适应于DG有限元方法的隐式计算方法;借鉴一维和二维(三角形单元)DG有限元限制器构... 基于龙格库塔间断Galerkin(RKDG)有限元法的构造思想,通过局部坐标变换,发展了非正交单元DG有限元计算方法;借鉴非结构网格有限体积隐式计算方法,发展了适应于DG有限元方法的隐式计算方法;借鉴一维和二维(三角形单元)DG有限元限制器构造方法,提出了非正交三棱柱单元限制器方法;利用上述方法数值模拟了球头和双椭球的高超声速粘性绕流,得到了清晰的流场结构,并得到了较好的压力和热流分布,表明该方法在复杂高超声速流动的数值模拟方面具有广阔的应用前景。 展开更多
关键词 非正交单元 间断Glerkin有限元 隐式计算方法
下载PDF
Navier-Stokes方程间断Galerkin有限元方法研究 被引量:23
16
作者 于剑 阎超 《力学学报》 EI CSCD 北大核心 2010年第5期962-970,共9页
通过引入全局提升算子和局部提升算子,发展了求解Navier-Stokes方程的间断Galerkin(discontinuousGalerkin,DG)有限元方法的一般框架,并在此框架下给出了几种典型黏性离散格式的具体表达形式.对局部提升算子的求解给出了详细的计算步骤... 通过引入全局提升算子和局部提升算子,发展了求解Navier-Stokes方程的间断Galerkin(discontinuousGalerkin,DG)有限元方法的一般框架,并在此框架下给出了几种典型黏性离散格式的具体表达形式.对局部提升算子的求解给出了详细的计算步骤.同时还给出了一种简单有效的计算方法来对物面边界进行高阶近似.为了能够对NS方程进行精度测试,采用对原始系统添加源项的方法构造精确解.二维Euler和NS系统的精度测试表明该方法达到了DG方法的理论精度.二维圆柱无黏绕流的计算结果表明关于物面边界的高阶近似方法能够保持DG方法原有的精度.卡门涡街数值模拟则进一步验证了该方法的正确性并且显示出DG方法较高的计算精度和分辨率. 展开更多
关键词 间断galerkin有限元方法 NAVIER-STOKES方程 黏性项 计算流体力学
下载PDF
高阶间断Galerkin方法求解三维欧拉方程的研究 被引量:2
17
作者 郝海兵 杨永 左岁寒 《西北工业大学学报》 EI CAS CSCD 北大核心 2011年第1期128-132,共5页
在三维非结构网格上,对高阶间断Galerkin方法求解定常三维欧拉方程进行研究。文中使用Roe格式通量函数计算网格单元边界上的数值通量;时间方向采用显式Runge-Kutta方法推进;并引入激波探测器和斜率限制器技术,成功地抑制流场解在间断处... 在三维非结构网格上,对高阶间断Galerkin方法求解定常三维欧拉方程进行研究。文中使用Roe格式通量函数计算网格单元边界上的数值通量;时间方向采用显式Runge-Kutta方法推进;并引入激波探测器和斜率限制器技术,成功地抑制流场解在间断处的数值振荡。对M6机翼跨音速无粘流场进行数值模拟,结果表明:计算结果和实验值吻合较好,和同等精度的有限体积法相比,具有更低的数值耗散和更强的激波捕捉能力。 展开更多
关键词 间断galerkin有限元 激波探测器 斜率限制器 欧拉方程
下载PDF
固体非傅立叶温度场的时域间断Galerkin有限元法 被引量:3
18
作者 武文华 李锡夔 《计算力学学报》 EI CAS CSCD 北大核心 2007年第2期219-223,共5页
运用时域间断Galerkin有限元法[1],对高频非傅立叶热波动问题[2-3]进行分析。其主要特点是:取温度及温度的时间导数为基本未知量,对其分别进行3次Hermite插值和线性插值。在保证节点温度自动保持连续的基础上,温度的时间导数在离散时域... 运用时域间断Galerkin有限元法[1],对高频非傅立叶热波动问题[2-3]进行分析。其主要特点是:取温度及温度的时间导数为基本未知量,对其分别进行3次Hermite插值和线性插值。在保证节点温度自动保持连续的基础上,温度的时间导数在离散时域存在间断。数值结果表明所提出的方法能够滤掉虚假的数值震荡,能够良好地模拟固体中的非傅立叶热波动行为。 展开更多
关键词 非傅立叶 热波动 间断galerkin有限元
下载PDF
基于局部间断Galerkin方法的p型有限元 被引量:2
19
作者 李子然 吴长春 《中国科学技术大学学报》 CAS CSCD 北大核心 2003年第3期324-329,共6页
将基于三变量能量原理的局部间断Galerkin方法 (localdiscontinuousGalerkin ,LDG)应用于 p型单元的构造 .该方法采用间断的单元试解 ,不需要满足普通有限元所必须的协调条件 ,就能使构造高阶的插值函数变得更加灵活和容易 .在此基础上 ... 将基于三变量能量原理的局部间断Galerkin方法 (localdiscontinuousGalerkin ,LDG)应用于 p型单元的构造 .该方法采用间断的单元试解 ,不需要满足普通有限元所必须的协调条件 ,就能使构造高阶的插值函数变得更加灵活和容易 .在此基础上 ,对应力和应变场采用Legendre正交多项式进行插值 ,避免了柔度矩阵的求逆过程 .数值算例表明这种方法构造出的 p型单元不仅升阶过程简单 ,而且具有较高的精度 . 展开更多
关键词 p型有限元 局部间断galerkin方法 Legendre正交多项式
下载PDF
隐-显积分因子间断Galerkin方法求解二维辐射扩散方程 被引量:1
20
作者 张荣培 蔚喜军 +1 位作者 崔霞 冯涛 《计算物理》 EI CSCD 北大核心 2012年第5期647-653,共7页
提出一种求解二维非平衡辐射扩散方程的数值方法.空间离散上采用加权间断Galerkin有限元方法,其中数值流量的构造采用一种新的加权平均;时间离散上采用隐-显积分因子方法,将扩散系数线性化,然后用积分因子方法求解间断Galerkin方法离散... 提出一种求解二维非平衡辐射扩散方程的数值方法.空间离散上采用加权间断Galerkin有限元方法,其中数值流量的构造采用一种新的加权平均;时间离散上采用隐-显积分因子方法,将扩散系数线性化,然后用积分因子方法求解间断Galerkin方法离散后的非线性常微分方程组.数值试验中在非结构网格上求解了多介质的辐射扩散方程.结果表明:对于强非线性和强耦合的非线性扩散方程组,该方法是一种非常有效的数值算法. 展开更多
关键词 二维辐射扩散方程 间断有限元 加权平均 隐-显积分因子方法 非结构网格
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部