In this paper,we develop bound-preserving discontinuous Galerkin(DG)methods for chemical reactive flows.There are several difficulties in constructing suitable numerical schemes.First of all,the density and internal e...In this paper,we develop bound-preserving discontinuous Galerkin(DG)methods for chemical reactive flows.There are several difficulties in constructing suitable numerical schemes.First of all,the density and internal energy are positive,and the mass fraction of each species is between 0 and 1.Second,due to the rapid reaction rate,the system may contain stiff sources,and the strong-stability-preserving explicit Runge-Kutta method may result in limited time-step sizes.To obtain physically relevant numerical approximations,we apply the bound-preserving technique to the DG methods.Though traditional positivity-preserving techniques can successfully yield positive density,internal energy,and mass fractions,they may not enforce the upper bound 1 of the mass fractions.To solve this problem,we need to(i)make sure the numerical fluxes in the equations of the mass fractions are consistent with that in the equation of the density;(ii)choose conservative time integrations,such that the summation of the mass fractions is preserved.With the above two conditions,the positive mass fractions have summation 1,and then,they are all between 0 and 1.For time discretization,we apply the modified Runge-Kutta/multi-step Patankar methods,which are explicit for the flux while implicit for the source.Such methods can handle stiff sources with relatively large time steps,preserve the positivity of the target variables,and keep the summation of the mass fractions to be 1.Finally,it is not straightforward to combine the bound-preserving DG methods and the Patankar time integrations.The positivity-preserving technique for DG methods requires positive numerical approximations at the cell interfaces,while Patankar methods can keep the positivity of the pre-selected point values of the target variables.To match the degree of freedom,we use polynomials on rectangular meshes for problems in two space dimensions.To evolve in time,we first read the polynomials at the Gaussian points.Then,suitable slope limiters can be applied to enforce the positivity of the solutions at those points,which can be preserved by the Patankar methods,leading to positive updated numerical cell averages.In addition,we use another slope limiter to get positive solutions used for the bound-preserving technique for the flux.Numerical examples are given to demonstrate the good performance of the proposed schemes.展开更多
In this paper,numerical experiments are carried out to investigate the impact of penalty parameters in the numerical traces on the resonance errors of high-order multiscale discontinuous Galerkin(DG)methods(Dong et al...In this paper,numerical experiments are carried out to investigate the impact of penalty parameters in the numerical traces on the resonance errors of high-order multiscale discontinuous Galerkin(DG)methods(Dong et al.in J Sci Comput 66:321–345,2016;Dong and Wang in J Comput Appl Math 380:1–11,2020)for a one-dimensional stationary Schrödinger equation.Previous work showed that penalty parameters were required to be positive in error analysis,but the methods with zero penalty parameters worked fine in numerical simulations on coarse meshes.In this work,by performing extensive numerical experiments,we discover that zero penalty parameters lead to resonance errors in the multiscale DG methods,and taking positive penalty parameters can effectively reduce resonance errors and make the matrix in the global linear system have better condition numbers.展开更多
In this paper,we construct a high-order discontinuous Galerkin(DG)method which can preserve the positivity of the density and the pressure for the viscous and resistive magnetohydrodynamics(VRMHD).To control the diver...In this paper,we construct a high-order discontinuous Galerkin(DG)method which can preserve the positivity of the density and the pressure for the viscous and resistive magnetohydrodynamics(VRMHD).To control the divergence error in the magnetic field,both the local divergence-free basis and the Godunov source term would be employed for the multi-dimensional VRMHD.Rigorous theoretical analyses are presented for one-dimensional and multi-dimensional DG schemes,respectively,showing that the scheme can maintain the positivity-preserving(PP)property under some CFL conditions when combined with the strong-stability-preserving time discretization.Then,general frameworks are established to construct the PP limiter for arbitrary order of accuracy DG schemes.Numerical tests demonstrate the effectiveness of the proposed schemes.展开更多
In this paper,we propose a novel Local Macroscopic Conservative(LoMaC)low rank tensor method with discontinuous Galerkin(DG)discretization for the physical and phase spaces for simulating the Vlasov-Poisson(VP)system....In this paper,we propose a novel Local Macroscopic Conservative(LoMaC)low rank tensor method with discontinuous Galerkin(DG)discretization for the physical and phase spaces for simulating the Vlasov-Poisson(VP)system.The LoMaC property refers to the exact local conservation of macroscopic mass,momentum,and energy at the discrete level.The recently developed LoMaC low rank tensor algorithm(arXiv:2207.00518)simultaneously evolves the macroscopic conservation laws of mass,momentum,and energy using the kinetic flux vector splitting;then the LoMaC property is realized by projecting the low rank kinetic solution onto a subspace that shares the same macroscopic observables.This paper is a generalization of our previous work,but with DG discretization to take advantage of its compactness and flexibility in handling boundary conditions and its superior accuracy in the long term.The algorithm is developed in a similar fashion as that for a finite difference scheme,by observing that the DG method can be viewed equivalently in a nodal fashion.With the nodal DG method,assuming a tensorized computational grid,one will be able to(i)derive differentiation matrices for different nodal points based on a DG upwind discretization of transport terms,and(ii)define a weighted inner product space based on the nodal DG grid points.The algorithm can be extended to the high dimensional problems by hierarchical Tucker(HT)decomposition of solution tensors and a corresponding conservative projection algorithm.In a similar spirit,the algorithm can be extended to DG methods on nodal points of an unstructured mesh,or to other types of discretization,e.g.,the spectral method in velocity direction.Extensive numerical results are performed to showcase the efficacy of the method.展开更多
A discontinuous Galerkin finite element method (DG-FEM) is developed for solving the axisymmetric Euler equations based on two-dimensional conservation laws. The method is used to simulate the unsteady-state underex...A discontinuous Galerkin finite element method (DG-FEM) is developed for solving the axisymmetric Euler equations based on two-dimensional conservation laws. The method is used to simulate the unsteady-state underexpanded axisymmetric jet. Several flow property distributions along the jet axis, including density, pres- sure and Mach number are obtained and the qualitative flowfield structures of interest are well captured using the proposed method, including shock waves, slipstreams, traveling vortex ring and multiple Mach disks. Two Mach disk locations agree well with computational and experimental measurement results. It indicates that the method is robust and efficient for solving the unsteady-state underexpanded axisymmetric jet.展开更多
A numerical simulation of the toroidal shock wave focusing in a co-axial cylindrical shock tube is inves- tigated by using discontinuous Galerkin (DG) finite element method to solve the axisymmetric Euler equations....A numerical simulation of the toroidal shock wave focusing in a co-axial cylindrical shock tube is inves- tigated by using discontinuous Galerkin (DG) finite element method to solve the axisymmetric Euler equations. For validating the numerical method, the shock-tube problem with exact solution is computed, and the computed results agree well with the exact cases. Then, several cases with higher incident Mach numbers varying from 2.0 to 5.0 are simulated. Simulation results show that complicated flow-field structures of toroidal shock wave diffraction, reflection, and focusing in a co-axial cylindrical shock tube can be obtained at different incident Mach numbers and the numerical solutions appear steep gradients near the focusing point, which illustrates the DG method has higher accuracy and better resolution near the discontinuous point. Moreover, the focusing peak pres- sure with different grid scales is compared.展开更多
In this paper,a new strategy for a sub-element-based shock capturing for discontinuous Galerkin(DG)approximations is presented.The idea is to interpret a DG element as a col-lection of data and construct a hierarchy o...In this paper,a new strategy for a sub-element-based shock capturing for discontinuous Galerkin(DG)approximations is presented.The idea is to interpret a DG element as a col-lection of data and construct a hierarchy of low-to-high-order discretizations on this set of data,including a first-order finite volume scheme up to the full-order DG scheme.The dif-ferent DG discretizations are then blended according to sub-element troubled cell indicators,resulting in a final discretization that adaptively blends from low to high order within a single DG element.The goal is to retain as much high-order accuracy as possible,even in simula-tions with very strong shocks,as,e.g.,presented in the Sedov test.The framework retains the locality of the standard DG scheme and is hence well suited for a combination with adaptive mesh refinement and parallel computing.The numerical tests demonstrate the sub-element adaptive behavior of the new shock capturing approach and its high accuracy.展开更多
The complex structure and strong heterogeneity of advanced nuclear reactor systems pose challenges for high-fidelity neutron-shielding calculations. Unstructured meshes exhibit strong geometric adaptability and can ov...The complex structure and strong heterogeneity of advanced nuclear reactor systems pose challenges for high-fidelity neutron-shielding calculations. Unstructured meshes exhibit strong geometric adaptability and can overcome the deficiencies of conventionally structured meshes in complex geometry modeling. A multithreaded parallel upwind sweep algorithm for S_(N) transport was proposed to achieve a more accurate geometric description and improve the computational efficiency. The spatial variables were discretized using the standard discontinuous Galerkin finite-element method. The angular flux transmission between neighboring meshes was handled using an upwind scheme. In addition, a combination of a mesh transport sweep and angular iterations was realized using a multithreaded parallel technique. The algorithm was implemented in the 2D/3D S_(N) transport code ThorSNIPE, and numerical evaluations were conducted using three typical benchmark problems:IAEA, Kobayashi-3i, and VENUS-3. These numerical results indicate that the multithreaded parallel upwind sweep algorithm can achieve high computational efficiency. ThorSNIPE, with a multithreaded parallel upwind sweep algorithm, has good reliability, stability, and high efficiency, making it suitable for complex shielding calculations.展开更多
The discontinuous Galerkin(DG) method is established and innovatively conducted on accurately simulating the evolution of blade-tip vortex and the aerodynamic characteristics of helicopter rotor. Firstly,the Reynolds-...The discontinuous Galerkin(DG) method is established and innovatively conducted on accurately simulating the evolution of blade-tip vortex and the aerodynamic characteristics of helicopter rotor. Firstly,the Reynolds-Averaged Navier-Stokes(RANS)equations in rotating reference frame are employed,and the embedded grid system is developed with the finite volume method(FVM)and the DG method conducted on the blade grid and background grid respectively. Besides,the Harten-Lax-Van Leer contact(HLLC)scheme with high-resolution and low-dissipation is employed for spatial discretization,and the explicit third-order Runge-Kutta scheme is used to accomplish the temporal discretization. Secondly,the aerodynamic characteristics and the evolution of blade-tip vortex for Caradonna-Tung rotor are simulated by the established CFD method,and the numerical results are in good agreement with experimental data,which well validates the accuracy of the DG method and shows the advantages of DG method on capturing the detailed blade-tip vortex compared with the FVM method. Finally,the evolution of tip vortex at different blade tip Mach numbers and collective pitches is discussed.展开更多
Efficient and robust solution strategies are developed for discontinuous Galerkin (DG) discretization of the Navier-Stokes (NS) and Reynolds-averaged NS (RANS) equations on structured/unstructured hybrid meshes....Efficient and robust solution strategies are developed for discontinuous Galerkin (DG) discretization of the Navier-Stokes (NS) and Reynolds-averaged NS (RANS) equations on structured/unstructured hybrid meshes. A novel line-implicit scheme is devised and implemented to reduce the memory gain and improve the computational eificiency for highly anisotropic meshes. A simple and effective technique to use the mod- ified Baldwin-Lomax (BL) model on the unstructured meshes for the DC methods is proposed. The compact Hermite weighted essentially non-oscillatory (HWENO) limiters are also investigated for the hybrid meshes to treat solution discontinuities. A variety of compressible viscous flows are performed to examine the capability of the present high- order DG solver. Numerical results indicate that the designed line-implicit algorithms exhibit weak dependence on the cell aspect-ratio as well as the discretization order. The accuracy and robustness of the proposed approaches are demonstrated by capturing com- plex flow structures and giving reliable predictions of benchmark turbulent problems.展开更多
This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either...This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either finite difference(FD)or local discontinuous Galerkin(DG)spatial discretization.We analyze the stability of the fully discrete scheme,on a uniform mesh with periodic boundary conditions,using the Fourier method.For the linearized KdV equation,the IMEX schemes are stable under the standard Courant-Friedrichs-Lewy(CFL)conditionτ≤λh.Here,λis the CFL number,τis the time-step size,and h is the spatial mesh size.We study several IMEX schemes and characterize their CFL number as a function ofθ=d/h^(2)with d being the dispersion coefficient,which leads to several interesting observations.We also investigate the asymptotic behaviors of the CFL number for sufficiently refined meshes and derive the necessary conditions for the asymptotic stability of the IMEX-RK methods.Some numerical experiments are provided in the paper to illustrate the performance of IMEX methods under different time-step constraints.展开更多
A discontinuous Galerkin(DG)-based lattice Boltzmann method is employed to solve the Euler and Navier-Stokes equations.Instead of adopting the widely used local Lax-Friedrichs flux and Roe Flux etc.,a hybrid lattice B...A discontinuous Galerkin(DG)-based lattice Boltzmann method is employed to solve the Euler and Navier-Stokes equations.Instead of adopting the widely used local Lax-Friedrichs flux and Roe Flux etc.,a hybrid lattice Boltzmann flux solver(LBFS)is employed to evaluate the inviscid flux across the cell interfaces.The main advantage of the hybrid LBFS is its flexibility for capturing both strong shocks and thin boundary layers through introducing a function which varies from zero to one to control the artificial viscosity.Numerical results indicate that the hybrid lattice Boltzmann flux solver behaves very well combining with the high-order DG method when simulating both inviscid and viscous flows.展开更多
As the number of automobiles continues to increase year after year,the associated problem of traffic congestion has become a serious societal issue.Initiatives to mitigate this problem have considered methods for opti...As the number of automobiles continues to increase year after year,the associated problem of traffic congestion has become a serious societal issue.Initiatives to mitigate this problem have considered methods for optimizing traffic volumes in wide-area road networks,and traffic-flow simulation has become a focus of interest as a technique for advance characterization of such strategies.Classes of models commonly used for traffic-flow simulations include microscopic models based on discrete vehicle representations,macroscopic models that describe entire traffic-flow systems in terms of average vehicle densities and velocities,and mesoscopic models and hybrid(or multiscale)models incorporating both microscopic and macroscopic features.Because traffic-flow simulations are designed to model traffic systems under a variety of conditions,their underlyingmodelsmust be capable of rapidly capturing the consequences of minor variations in operating environments.In other words,the computation speed of macroscopic models and the precise representation of microscopic models are needed simultaneously.Thus,in this study we propose a multiscale model that combines a microscopic model—for detailed analysis of subregions containing traffic congestion bottlenecks or other localized phenomena of interest-with a macroscopic model enabling simulation of wide target areas at a modest computational cost.In addition,to ensure analytical stability with robustness in the presence of discontinuities,we discretize our macroscopic model using a discontinuous Galerkin finite element method(DGFEM),while to conjoin microscopic and macroscopic models,we use a generating/absorbing sponge layer,a technique widely used for numerical analysis of long-wavelength phenomena in shallow water,to enable traffic-flow simulations with stable input and output regions.展开更多
The present study regards the numerical approximation of solutions of systems of Korteweg-de Vries type,coupled through their nonlinear terms.In our previous work[9],we constructed conservative and dissipative finite ...The present study regards the numerical approximation of solutions of systems of Korteweg-de Vries type,coupled through their nonlinear terms.In our previous work[9],we constructed conservative and dissipative finite element methods for these systems and presented a priori error estimates for the semidiscrete schemes.In this sequel,we present a posteriori error estimates for the semidiscrete and fully discrete approximations introduced in[9].The key tool employed to effect our analysis is the dispersive reconstruction devel-oped by Karakashian and Makridakis[20]for related discontinuous Galerkin methods.We conclude by providing a set of numerical experiments designed to validate the a posteriori theory and explore the effectivity of the resulting error indicators.展开更多
The finite volume(FV)method is the dominating discretization technique for computational fluid dynamics(CFD),particularly in the case of compressible fluids.The discontinuous Galerkin(DG)method has emerged as a promis...The finite volume(FV)method is the dominating discretization technique for computational fluid dynamics(CFD),particularly in the case of compressible fluids.The discontinuous Galerkin(DG)method has emerged as a promising highaccuracy alternative.The standard DG method reduces to a cell-centered FV method at lowest order.However,many of today’s CFD codes use a vertex-centered FV method in which the data structures are edge based.We develop a new DG method that reduces to the vertex-centered FV method at lowest order,and examine here the new scheme for scalar hyperbolic problems.Numerically,the method shows optimal-order accuracy for a smooth linear problem.By applying a basic hp-adaption strategy,the method successfully handles shocks.We also discuss how to extend the FV edge-based data structure to support the new scheme.In this way,it will in principle be possible to extend an existing code employing the vertex-centered and edge-based FV discretization to encompass higher accuracy through the new DG method.展开更多
In this paper, we consider the finite element method and discontinuous Galerkin method for the stochastic Helmholtz equation in R^d (d = 2, 3). Convergence analysis and error estimates are presented for the numerica...In this paper, we consider the finite element method and discontinuous Galerkin method for the stochastic Helmholtz equation in R^d (d = 2, 3). Convergence analysis and error estimates are presented for the numerical solutions. The effects of the noises on the accuracy of the approximations are illustrated. Numerical experiments are carried out to verify our theoretical results.展开更多
Hyperbolic balance laws have steady state solutions in which the flux gradients are nonzero but are exactly balanced by the source terms.In our earlier work[31–33],we designed high order well-balanced schemes to a cl...Hyperbolic balance laws have steady state solutions in which the flux gradients are nonzero but are exactly balanced by the source terms.In our earlier work[31–33],we designed high order well-balanced schemes to a class of hyperbolic systems with separable source terms.In this paper,we present a different approach to the same purpose:designing high order well-balanced finite volume weighted essentially non-oscillatory(WENO)schemes and RungeKutta discontinuous Galerkin(RKDG)finite element methods.We make the observation that the traditional RKDG methods are capable of maintaining certain steady states exactly,if a small modification on either the initial condition or the flux is provided.The computational cost to obtain such a well balanced RKDG method is basically the same as the traditional RKDG method.The same idea can be applied to the finite volume WENO schemes.We will first describe the algorithms and prove the well balanced property for the shallow water equations,and then show that the result can be generalized to a class of other balance laws.We perform extensive one and two dimensional simulations to verify the properties of these schemes such as the exact preservation of the balance laws for certain steady state solutions,the non-oscillatory property for general solutions with discontinuities,and the genuine high order accuracy in smooth regions.展开更多
A combined method consisting of the mixed finite element method for flow and the local discontinuous Galerkin method for transport is introduced for the one-dimensional coupled system of incompressible miscible displa...A combined method consisting of the mixed finite element method for flow and the local discontinuous Galerkin method for transport is introduced for the one-dimensional coupled system of incompressible miscible displacement problem. Optimal error estimates in L∞(0,T;L2) for concentration c,in L2(0,T;L2)for cxand L∞(0,T;L2) for velocity u are derived. The main technical difficulties in the analysis include the treatment of the inter-element jump terms which arise from the discontinuous nature of the numerical method,the nonlinearity,and the coupling of the models. Numerical experiments are performed to verify the theoretical results. Finally,we apply this method to the one-dimensional compressible miscible displacement problem and give the numerical experiments to confirm the efficiency of the scheme.展开更多
基金supported by the NSF under Grant DMS-1818467Simons Foundation under Grant 961585.
文摘In this paper,we develop bound-preserving discontinuous Galerkin(DG)methods for chemical reactive flows.There are several difficulties in constructing suitable numerical schemes.First of all,the density and internal energy are positive,and the mass fraction of each species is between 0 and 1.Second,due to the rapid reaction rate,the system may contain stiff sources,and the strong-stability-preserving explicit Runge-Kutta method may result in limited time-step sizes.To obtain physically relevant numerical approximations,we apply the bound-preserving technique to the DG methods.Though traditional positivity-preserving techniques can successfully yield positive density,internal energy,and mass fractions,they may not enforce the upper bound 1 of the mass fractions.To solve this problem,we need to(i)make sure the numerical fluxes in the equations of the mass fractions are consistent with that in the equation of the density;(ii)choose conservative time integrations,such that the summation of the mass fractions is preserved.With the above two conditions,the positive mass fractions have summation 1,and then,they are all between 0 and 1.For time discretization,we apply the modified Runge-Kutta/multi-step Patankar methods,which are explicit for the flux while implicit for the source.Such methods can handle stiff sources with relatively large time steps,preserve the positivity of the target variables,and keep the summation of the mass fractions to be 1.Finally,it is not straightforward to combine the bound-preserving DG methods and the Patankar time integrations.The positivity-preserving technique for DG methods requires positive numerical approximations at the cell interfaces,while Patankar methods can keep the positivity of the pre-selected point values of the target variables.To match the degree of freedom,we use polynomials on rectangular meshes for problems in two space dimensions.To evolve in time,we first read the polynomials at the Gaussian points.Then,suitable slope limiters can be applied to enforce the positivity of the solutions at those points,which can be preserved by the Patankar methods,leading to positive updated numerical cell averages.In addition,we use another slope limiter to get positive solutions used for the bound-preserving technique for the flux.Numerical examples are given to demonstrate the good performance of the proposed schemes.
基金supported by the National Science Foundation grant DMS-1818998.
文摘In this paper,numerical experiments are carried out to investigate the impact of penalty parameters in the numerical traces on the resonance errors of high-order multiscale discontinuous Galerkin(DG)methods(Dong et al.in J Sci Comput 66:321–345,2016;Dong and Wang in J Comput Appl Math 380:1–11,2020)for a one-dimensional stationary Schrödinger equation.Previous work showed that penalty parameters were required to be positive in error analysis,but the methods with zero penalty parameters worked fine in numerical simulations on coarse meshes.In this work,by performing extensive numerical experiments,we discover that zero penalty parameters lead to resonance errors in the multiscale DG methods,and taking positive penalty parameters can effectively reduce resonance errors and make the matrix in the global linear system have better condition numbers.
基金supported by the NSFC Grant 11901555,12271499the Cyrus Tang Foundationsupported by the NSFC Grant 11871448 and 12126604.
文摘In this paper,we construct a high-order discontinuous Galerkin(DG)method which can preserve the positivity of the density and the pressure for the viscous and resistive magnetohydrodynamics(VRMHD).To control the divergence error in the magnetic field,both the local divergence-free basis and the Godunov source term would be employed for the multi-dimensional VRMHD.Rigorous theoretical analyses are presented for one-dimensional and multi-dimensional DG schemes,respectively,showing that the scheme can maintain the positivity-preserving(PP)property under some CFL conditions when combined with the strong-stability-preserving time discretization.Then,general frameworks are established to construct the PP limiter for arbitrary order of accuracy DG schemes.Numerical tests demonstrate the effectiveness of the proposed schemes.
基金supported by the NSF(Grant Nos.the NSF-DMS-1818924 and 2111253)the Air Force Office of Scientific Research FA9550-22-1-0390 and Department of Energy DE-SC0023164+1 种基金supported by the NSF(Grant Nos.NSF-DMS-1830838 and NSF-DMS-2111383)the Air Force Office of Scientific Research FA9550-22-1-0390.
文摘In this paper,we propose a novel Local Macroscopic Conservative(LoMaC)low rank tensor method with discontinuous Galerkin(DG)discretization for the physical and phase spaces for simulating the Vlasov-Poisson(VP)system.The LoMaC property refers to the exact local conservation of macroscopic mass,momentum,and energy at the discrete level.The recently developed LoMaC low rank tensor algorithm(arXiv:2207.00518)simultaneously evolves the macroscopic conservation laws of mass,momentum,and energy using the kinetic flux vector splitting;then the LoMaC property is realized by projecting the low rank kinetic solution onto a subspace that shares the same macroscopic observables.This paper is a generalization of our previous work,but with DG discretization to take advantage of its compactness and flexibility in handling boundary conditions and its superior accuracy in the long term.The algorithm is developed in a similar fashion as that for a finite difference scheme,by observing that the DG method can be viewed equivalently in a nodal fashion.With the nodal DG method,assuming a tensorized computational grid,one will be able to(i)derive differentiation matrices for different nodal points based on a DG upwind discretization of transport terms,and(ii)define a weighted inner product space based on the nodal DG grid points.The algorithm can be extended to the high dimensional problems by hierarchical Tucker(HT)decomposition of solution tensors and a corresponding conservative projection algorithm.In a similar spirit,the algorithm can be extended to DG methods on nodal points of an unstructured mesh,or to other types of discretization,e.g.,the spectral method in velocity direction.Extensive numerical results are performed to showcase the efficacy of the method.
文摘A discontinuous Galerkin finite element method (DG-FEM) is developed for solving the axisymmetric Euler equations based on two-dimensional conservation laws. The method is used to simulate the unsteady-state underexpanded axisymmetric jet. Several flow property distributions along the jet axis, including density, pres- sure and Mach number are obtained and the qualitative flowfield structures of interest are well captured using the proposed method, including shock waves, slipstreams, traveling vortex ring and multiple Mach disks. Two Mach disk locations agree well with computational and experimental measurement results. It indicates that the method is robust and efficient for solving the unsteady-state underexpanded axisymmetric jet.
基金Supported by the National Natural Science Foundation of China(50976072,51106099,10902070)the Leading Academic Discipline Project of Shanghai Municipal Education Commission(J50501)the Science Foundation for the Excellent Youth Scholar of Higher Education of Shanghai(slg09003)~~
文摘A numerical simulation of the toroidal shock wave focusing in a co-axial cylindrical shock tube is inves- tigated by using discontinuous Galerkin (DG) finite element method to solve the axisymmetric Euler equations. For validating the numerical method, the shock-tube problem with exact solution is computed, and the computed results agree well with the exact cases. Then, several cases with higher incident Mach numbers varying from 2.0 to 5.0 are simulated. Simulation results show that complicated flow-field structures of toroidal shock wave diffraction, reflection, and focusing in a co-axial cylindrical shock tube can be obtained at different incident Mach numbers and the numerical solutions appear steep gradients near the focusing point, which illustrates the DG method has higher accuracy and better resolution near the discontinuous point. Moreover, the focusing peak pres- sure with different grid scales is compared.
文摘In this paper,a new strategy for a sub-element-based shock capturing for discontinuous Galerkin(DG)approximations is presented.The idea is to interpret a DG element as a col-lection of data and construct a hierarchy of low-to-high-order discretizations on this set of data,including a first-order finite volume scheme up to the full-order DG scheme.The dif-ferent DG discretizations are then blended according to sub-element troubled cell indicators,resulting in a final discretization that adaptively blends from low to high order within a single DG element.The goal is to retain as much high-order accuracy as possible,even in simula-tions with very strong shocks,as,e.g.,presented in the Sedov test.The framework retains the locality of the standard DG scheme and is hence well suited for a combination with adaptive mesh refinement and parallel computing.The numerical tests demonstrate the sub-element adaptive behavior of the new shock capturing approach and its high accuracy.
文摘The complex structure and strong heterogeneity of advanced nuclear reactor systems pose challenges for high-fidelity neutron-shielding calculations. Unstructured meshes exhibit strong geometric adaptability and can overcome the deficiencies of conventionally structured meshes in complex geometry modeling. A multithreaded parallel upwind sweep algorithm for S_(N) transport was proposed to achieve a more accurate geometric description and improve the computational efficiency. The spatial variables were discretized using the standard discontinuous Galerkin finite-element method. The angular flux transmission between neighboring meshes was handled using an upwind scheme. In addition, a combination of a mesh transport sweep and angular iterations was realized using a multithreaded parallel technique. The algorithm was implemented in the 2D/3D S_(N) transport code ThorSNIPE, and numerical evaluations were conducted using three typical benchmark problems:IAEA, Kobayashi-3i, and VENUS-3. These numerical results indicate that the multithreaded parallel upwind sweep algorithm can achieve high computational efficiency. ThorSNIPE, with a multithreaded parallel upwind sweep algorithm, has good reliability, stability, and high efficiency, making it suitable for complex shielding calculations.
基金supported by the National Natural Science Foundation of China(Nos.12072156, 12032012)the Foundation of Rotor Aerodynamic Key Laboratory (No.RAL20190102)the Priority Academic Program Development Project of Jiangsu Higher Education Institutions(PAPD)。
文摘The discontinuous Galerkin(DG) method is established and innovatively conducted on accurately simulating the evolution of blade-tip vortex and the aerodynamic characteristics of helicopter rotor. Firstly,the Reynolds-Averaged Navier-Stokes(RANS)equations in rotating reference frame are employed,and the embedded grid system is developed with the finite volume method(FVM)and the DG method conducted on the blade grid and background grid respectively. Besides,the Harten-Lax-Van Leer contact(HLLC)scheme with high-resolution and low-dissipation is employed for spatial discretization,and the explicit third-order Runge-Kutta scheme is used to accomplish the temporal discretization. Secondly,the aerodynamic characteristics and the evolution of blade-tip vortex for Caradonna-Tung rotor are simulated by the established CFD method,and the numerical results are in good agreement with experimental data,which well validates the accuracy of the DG method and shows the advantages of DG method on capturing the detailed blade-tip vortex compared with the FVM method. Finally,the evolution of tip vortex at different blade tip Mach numbers and collective pitches is discussed.
基金Project supported by the National Basic Research Program of China(No.2009CB724104)
文摘Efficient and robust solution strategies are developed for discontinuous Galerkin (DG) discretization of the Navier-Stokes (NS) and Reynolds-averaged NS (RANS) equations on structured/unstructured hybrid meshes. A novel line-implicit scheme is devised and implemented to reduce the memory gain and improve the computational eificiency for highly anisotropic meshes. A simple and effective technique to use the mod- ified Baldwin-Lomax (BL) model on the unstructured meshes for the DC methods is proposed. The compact Hermite weighted essentially non-oscillatory (HWENO) limiters are also investigated for the hybrid meshes to treat solution discontinuities. A variety of compressible viscous flows are performed to examine the capability of the present high- order DG solver. Numerical results indicate that the designed line-implicit algorithms exhibit weak dependence on the cell aspect-ratio as well as the discretization order. The accuracy and robustness of the proposed approaches are demonstrated by capturing com- plex flow structures and giving reliable predictions of benchmark turbulent problems.
基金supported by the NSF under Grant DMS-2208391sponsored by the NSF under Grant DMS-1753581.
文摘This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either finite difference(FD)or local discontinuous Galerkin(DG)spatial discretization.We analyze the stability of the fully discrete scheme,on a uniform mesh with periodic boundary conditions,using the Fourier method.For the linearized KdV equation,the IMEX schemes are stable under the standard Courant-Friedrichs-Lewy(CFL)conditionτ≤λh.Here,λis the CFL number,τis the time-step size,and h is the spatial mesh size.We study several IMEX schemes and characterize their CFL number as a function ofθ=d/h^(2)with d being the dispersion coefficient,which leads to several interesting observations.We also investigate the asymptotic behaviors of the CFL number for sufficiently refined meshes and derive the necessary conditions for the asymptotic stability of the IMEX-RK methods.Some numerical experiments are provided in the paper to illustrate the performance of IMEX methods under different time-step constraints.
文摘A discontinuous Galerkin(DG)-based lattice Boltzmann method is employed to solve the Euler and Navier-Stokes equations.Instead of adopting the widely used local Lax-Friedrichs flux and Roe Flux etc.,a hybrid lattice Boltzmann flux solver(LBFS)is employed to evaluate the inviscid flux across the cell interfaces.The main advantage of the hybrid LBFS is its flexibility for capturing both strong shocks and thin boundary layers through introducing a function which varies from zero to one to control the artificial viscosity.Numerical results indicate that the hybrid lattice Boltzmann flux solver behaves very well combining with the high-order DG method when simulating both inviscid and viscous flows.
基金This work was supported in part by The Japan Society for the Promotion of Science(JSPS)KAKENHI Grant Nos.JP15H01785 and JP19H02377.
文摘As the number of automobiles continues to increase year after year,the associated problem of traffic congestion has become a serious societal issue.Initiatives to mitigate this problem have considered methods for optimizing traffic volumes in wide-area road networks,and traffic-flow simulation has become a focus of interest as a technique for advance characterization of such strategies.Classes of models commonly used for traffic-flow simulations include microscopic models based on discrete vehicle representations,macroscopic models that describe entire traffic-flow systems in terms of average vehicle densities and velocities,and mesoscopic models and hybrid(or multiscale)models incorporating both microscopic and macroscopic features.Because traffic-flow simulations are designed to model traffic systems under a variety of conditions,their underlyingmodelsmust be capable of rapidly capturing the consequences of minor variations in operating environments.In other words,the computation speed of macroscopic models and the precise representation of microscopic models are needed simultaneously.Thus,in this study we propose a multiscale model that combines a microscopic model—for detailed analysis of subregions containing traffic congestion bottlenecks or other localized phenomena of interest-with a macroscopic model enabling simulation of wide target areas at a modest computational cost.In addition,to ensure analytical stability with robustness in the presence of discontinuities,we discretize our macroscopic model using a discontinuous Galerkin finite element method(DGFEM),while to conjoin microscopic and macroscopic models,we use a generating/absorbing sponge layer,a technique widely used for numerical analysis of long-wavelength phenomena in shallow water,to enable traffic-flow simulations with stable input and output regions.
基金This work was supported in part by the National Science Foundation under grant DMS-1620288。
文摘The present study regards the numerical approximation of solutions of systems of Korteweg-de Vries type,coupled through their nonlinear terms.In our previous work[9],we constructed conservative and dissipative finite element methods for these systems and presented a priori error estimates for the semidiscrete schemes.In this sequel,we present a posteriori error estimates for the semidiscrete and fully discrete approximations introduced in[9].The key tool employed to effect our analysis is the dispersive reconstruction devel-oped by Karakashian and Makridakis[20]for related discontinuous Galerkin methods.We conclude by providing a set of numerical experiments designed to validate the a posteriori theory and explore the effectivity of the resulting error indicators.
基金The authors were supported in part by the ADIGMA project[3]and the Graduate School in Mathematics and Computing,FMB[16].
文摘The finite volume(FV)method is the dominating discretization technique for computational fluid dynamics(CFD),particularly in the case of compressible fluids.The discontinuous Galerkin(DG)method has emerged as a promising highaccuracy alternative.The standard DG method reduces to a cell-centered FV method at lowest order.However,many of today’s CFD codes use a vertex-centered FV method in which the data structures are edge based.We develop a new DG method that reduces to the vertex-centered FV method at lowest order,and examine here the new scheme for scalar hyperbolic problems.Numerically,the method shows optimal-order accuracy for a smooth linear problem.By applying a basic hp-adaption strategy,the method successfully handles shocks.We also discuss how to extend the FV edge-based data structure to support the new scheme.In this way,it will in principle be possible to extend an existing code employing the vertex-centered and edge-based FV discretization to encompass higher accuracy through the new DG method.
基金NSF under grant number 0609918AFOSR under grant numbers FA9550-06-1-0234 and FA9550-07-1-0154+2 种基金NSFC (10671082,10626026,10471054)NNSF (No.10701039 of China)985 program of Jilin University
文摘In this paper, we consider the finite element method and discontinuous Galerkin method for the stochastic Helmholtz equation in R^d (d = 2, 3). Convergence analysis and error estimates are presented for the numerical solutions. The effects of the noises on the accuracy of the approximations are illustrated. Numerical experiments are carried out to verify our theoretical results.
基金supported by ARO grant W911NF-04-1-0291,NSF grant DMS-0510345 and AFOSR grant FA9550-05-1-0123.
文摘Hyperbolic balance laws have steady state solutions in which the flux gradients are nonzero but are exactly balanced by the source terms.In our earlier work[31–33],we designed high order well-balanced schemes to a class of hyperbolic systems with separable source terms.In this paper,we present a different approach to the same purpose:designing high order well-balanced finite volume weighted essentially non-oscillatory(WENO)schemes and RungeKutta discontinuous Galerkin(RKDG)finite element methods.We make the observation that the traditional RKDG methods are capable of maintaining certain steady states exactly,if a small modification on either the initial condition or the flux is provided.The computational cost to obtain such a well balanced RKDG method is basically the same as the traditional RKDG method.The same idea can be applied to the finite volume WENO schemes.We will first describe the algorithms and prove the well balanced property for the shallow water equations,and then show that the result can be generalized to a class of other balance laws.We perform extensive one and two dimensional simulations to verify the properties of these schemes such as the exact preservation of the balance laws for certain steady state solutions,the non-oscillatory property for general solutions with discontinuities,and the genuine high order accuracy in smooth regions.
基金supported by National Natural Science Foundation of China(Grant No.11101431)the Fundamental Research Funds for the Central Universities
文摘A combined method consisting of the mixed finite element method for flow and the local discontinuous Galerkin method for transport is introduced for the one-dimensional coupled system of incompressible miscible displacement problem. Optimal error estimates in L∞(0,T;L2) for concentration c,in L2(0,T;L2)for cxand L∞(0,T;L2) for velocity u are derived. The main technical difficulties in the analysis include the treatment of the inter-element jump terms which arise from the discontinuous nature of the numerical method,the nonlinearity,and the coupling of the models. Numerical experiments are performed to verify the theoretical results. Finally,we apply this method to the one-dimensional compressible miscible displacement problem and give the numerical experiments to confirm the efficiency of the scheme.