An h-adaptive method is developed for high-order discontinuous Galerkin methods(DGM)to solve the laminar compressible Navier-Stokes(N-S)equations on unstructured mesh.The vorticity is regarded as the indicator of adap...An h-adaptive method is developed for high-order discontinuous Galerkin methods(DGM)to solve the laminar compressible Navier-Stokes(N-S)equations on unstructured mesh.The vorticity is regarded as the indicator of adaptivity.The elements where the vorticity is larger than a pre-defined upper limit are refined,and those where the vorticity is smaller than a pre-defined lower limit are coarsened if they have been refined.A high-order geometric approximation of curved boundaries is adopted to ensure the accuracy.Numerical results indicate that highly accurate numerical results can be obtained with the adaptive method at relatively low expense.展开更多
An implicit higher ? order discontinuous Galerkin(DG) spatial discretization for the compressible Euler equations in a rotating frame of reference is presented and applied to a rotor in hover using hexahedral grids. I...An implicit higher ? order discontinuous Galerkin(DG) spatial discretization for the compressible Euler equations in a rotating frame of reference is presented and applied to a rotor in hover using hexahedral grids. Instead of auxiliary methods like grid adaptation,higher ? order simulations(fourth ? and fifth ? order accuracy) are adopted.Rigorous numerical experiments are carefully designed,conducted and analyzed. The results show generally excellent consistence with references and vigorously demonstrate the higher?order DG method's better performance in loading distribution computations and tip vortex capturing, with much fewer degrees of freedom(DoF). Detailed investigations on the outer boundary conditions for hovering rotors are presented as well. A simple but effective speed smooth procedure is developed specially for the DG method. Further results reveal that the rarely used pressure restriction for outlet speed has a considerable advantage over the extensively adopted vertical speed restriction.展开更多
基金supported by the National Natural Science Foundation of China(11272152)
文摘An h-adaptive method is developed for high-order discontinuous Galerkin methods(DGM)to solve the laminar compressible Navier-Stokes(N-S)equations on unstructured mesh.The vorticity is regarded as the indicator of adaptivity.The elements where the vorticity is larger than a pre-defined upper limit are refined,and those where the vorticity is smaller than a pre-defined lower limit are coarsened if they have been refined.A high-order geometric approximation of curved boundaries is adopted to ensure the accuracy.Numerical results indicate that highly accurate numerical results can be obtained with the adaptive method at relatively low expense.
基金co-supported by the National High Technology Research and Development Program of China(No.2015AA015303)the National Natural Science Foundation of China(No.11272152)+1 种基金the Aeronautical Science Foundation of China(No.20152752033)the Open Project of Key Laboratory of Aerodynamic Noise Control
文摘An implicit higher ? order discontinuous Galerkin(DG) spatial discretization for the compressible Euler equations in a rotating frame of reference is presented and applied to a rotor in hover using hexahedral grids. Instead of auxiliary methods like grid adaptation,higher ? order simulations(fourth ? and fifth ? order accuracy) are adopted.Rigorous numerical experiments are carefully designed,conducted and analyzed. The results show generally excellent consistence with references and vigorously demonstrate the higher?order DG method's better performance in loading distribution computations and tip vortex capturing, with much fewer degrees of freedom(DoF). Detailed investigations on the outer boundary conditions for hovering rotors are presented as well. A simple but effective speed smooth procedure is developed specially for the DG method. Further results reveal that the rarely used pressure restriction for outlet speed has a considerable advantage over the extensively adopted vertical speed restriction.