Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This st...Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This study presents a systematic outcrop research of fracture pattern variations in a complicated rock slope,and the qualitative and quantitative study of the complex phenomena impact on threedimensional(3D)discrete fracture network(DFN)modeling.As the studies of the outcrop fracture pattern have been so far focused on local variations,thus,we put forward a statistical analysis of global variations.The entire outcrop is partitioned into several subzones,and the subzone-scale variability of fracture geometric properties is analyzed(including the orientation,the density,and the trace length).The results reveal significant variations in fracture characteristics(such as the concentrative degree,the average orientation,the density,and the trace length)among different subzones.Moreover,the density of fracture sets,which is approximately parallel to the slope surface,exhibits a notably higher value compared to other fracture sets across all subzones.To improve the accuracy of the DFN modeling,the effects of three common phenomena resulting from vegetation and rockfalls are qualitatively analyzed and the corresponding quantitative data processing solutions are proposed.Subsequently,the 3D fracture geometric parameters are determined for different areas of the high-steep rock slope in terms of the subzone dimensions.The results show significant variations in the same set of 3D fracture parameters across different regions with density differing by up to tenfold and mean trace length exhibiting differences of 3e4 times.The study results present precise geological structural information,improve modeling accuracy,and provide practical solutions for addressing complex outcrop issues.展开更多
Seismic observations have shown structural variation near the base of the mantle transition zone (MTZ) where subducted cold slabs, as visualized with high seismic speed anomalies (HSSAs), flatten to form stagnant ...Seismic observations have shown structural variation near the base of the mantle transition zone (MTZ) where subducted cold slabs, as visualized with high seismic speed anomalies (HSSAs), flatten to form stagnant slabs or sink further into the lower mantle. The different slab behaviors were also accompanied by variation of the "660 kin" discontinuity depths and low viscosity layers (LVLs) beneath the MTZ that are suggested by geoid inversion studies. We address that deep water transport by subducted slabs and dehydration from hydrous slabs could affect the physical properties of mantle minerals and govern slab dynamics. A systematic series of three-dimensional numerical simulation has been conducted to examine the effects of viscosity reduction or contrast between slab materials on slab behaviors near the base of the MTZ. We found that the viscosity reduction of subducted crustal material leads to a sepa- ration of crustal material from the slab main body and its transient stagnation in the MTZ. The once trapped crustal materials in the MTZ eventually sink into the lower mantle within 20 30 My from the start of the plate subduction. The results suggest crustal material recycle in the whole mantle that is consistent with evidence from mantle geochemistry as opposed to a two-layer mantle convection model. Because of the smaller capacity of water content in lower mantle minerals than in MTZ minerals, dehydration should occur at the phase transformation depth, ~660 kin. The variation of the disconti- nuity depths and highly localized low seismic speed anomaly (LSSA) zones observed from seismic P waveforms in a relatively high frequency band (~ 1 Hz) support the hypothesis of dehydration from hydrous slabs at the phase boundary. The LSSAs which correspond to dehydration induced fluids are likely to be very local, given very small hydrogen (H+) diffusivity associated with subducted slabs. The image of such local LSSA zones embedded in HSSAs may not be necessarily captured in tomography studies. The high electrical conductivity in the MTZ beneath the northwestern Pacific subduction zone does not necessarily require a broad range of high water content homogeneously.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2022YFC3080200)the National Natural Science Foundation of China(Grant No.42022053)the China Postdoctoral Science Foundation(Grant No.2023M731264).
文摘Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This study presents a systematic outcrop research of fracture pattern variations in a complicated rock slope,and the qualitative and quantitative study of the complex phenomena impact on threedimensional(3D)discrete fracture network(DFN)modeling.As the studies of the outcrop fracture pattern have been so far focused on local variations,thus,we put forward a statistical analysis of global variations.The entire outcrop is partitioned into several subzones,and the subzone-scale variability of fracture geometric properties is analyzed(including the orientation,the density,and the trace length).The results reveal significant variations in fracture characteristics(such as the concentrative degree,the average orientation,the density,and the trace length)among different subzones.Moreover,the density of fracture sets,which is approximately parallel to the slope surface,exhibits a notably higher value compared to other fracture sets across all subzones.To improve the accuracy of the DFN modeling,the effects of three common phenomena resulting from vegetation and rockfalls are qualitatively analyzed and the corresponding quantitative data processing solutions are proposed.Subsequently,the 3D fracture geometric parameters are determined for different areas of the high-steep rock slope in terms of the subzone dimensions.The results show significant variations in the same set of 3D fracture parameters across different regions with density differing by up to tenfold and mean trace length exhibiting differences of 3e4 times.The study results present precise geological structural information,improve modeling accuracy,and provide practical solutions for addressing complex outcrop issues.
基金supported partly by a Grant-in-Aid for Scientific Research(B)(Grant Number 23340132) from the Ministry of Education,Culture,Sports,Science and Technology(MEXT),Japan
文摘Seismic observations have shown structural variation near the base of the mantle transition zone (MTZ) where subducted cold slabs, as visualized with high seismic speed anomalies (HSSAs), flatten to form stagnant slabs or sink further into the lower mantle. The different slab behaviors were also accompanied by variation of the "660 kin" discontinuity depths and low viscosity layers (LVLs) beneath the MTZ that are suggested by geoid inversion studies. We address that deep water transport by subducted slabs and dehydration from hydrous slabs could affect the physical properties of mantle minerals and govern slab dynamics. A systematic series of three-dimensional numerical simulation has been conducted to examine the effects of viscosity reduction or contrast between slab materials on slab behaviors near the base of the MTZ. We found that the viscosity reduction of subducted crustal material leads to a sepa- ration of crustal material from the slab main body and its transient stagnation in the MTZ. The once trapped crustal materials in the MTZ eventually sink into the lower mantle within 20 30 My from the start of the plate subduction. The results suggest crustal material recycle in the whole mantle that is consistent with evidence from mantle geochemistry as opposed to a two-layer mantle convection model. Because of the smaller capacity of water content in lower mantle minerals than in MTZ minerals, dehydration should occur at the phase transformation depth, ~660 kin. The variation of the disconti- nuity depths and highly localized low seismic speed anomaly (LSSA) zones observed from seismic P waveforms in a relatively high frequency band (~ 1 Hz) support the hypothesis of dehydration from hydrous slabs at the phase boundary. The LSSAs which correspond to dehydration induced fluids are likely to be very local, given very small hydrogen (H+) diffusivity associated with subducted slabs. The image of such local LSSA zones embedded in HSSAs may not be necessarily captured in tomography studies. The high electrical conductivity in the MTZ beneath the northwestern Pacific subduction zone does not necessarily require a broad range of high water content homogeneously.