期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Incorporating contextual evidence to improve implicit discourse relation recognition in Chinese
1
作者 Sheng XU Peifeng LI Qiaoming ZHU 《Frontiers of Computer Science》 SCIE EI CSCD 2024年第3期91-104,共14页
The discourse analysis task,which focuses on understanding the semantics of long text spans,has received increasing attention in recent years.As a critical component of discourse analysis,discourse relation recognitio... The discourse analysis task,which focuses on understanding the semantics of long text spans,has received increasing attention in recent years.As a critical component of discourse analysis,discourse relation recognition aims to identify the rhetorical relations between adjacent discourse units(e.g.,clauses,sentences,and sentence groups),called arguments,in a document.Previous works focused on capturing the semantic interactions between arguments to recognize their discourse relations,ignoring important textual information in the surrounding contexts.However,in many cases,more than capturing semantic interactions from the texts of the two arguments are needed to identify their rhetorical relations,requiring mining more contextual clues.In this paper,we propose a method to convert the RST-style discourse trees in the training set into dependency-based trees and train a contextual evidence selector on these transformed structures.In this way,the selector can learn the ability to automatically pick critical textual information from the context(i.e.,as evidence)for arguments to assist in discriminating their relations.Then we encode the arguments concatenated with corresponding evidence to obtain the enhanced argument representations.Finally,we combine original and enhanced argument representations to recognize their relations.In addition,we introduce auxiliary tasks to guide the training of the evidence selector to strengthen its selection ability.The experimental results on the Chinese CDTB dataset show that our method outperforms several state-of-the-art baselines in both micro and macro F1 scores. 展开更多
关键词 discourse parsing discourse relation recognition contextual evidence selection
原文传递
Cross-lingual implicit discourse relation recognition with co-training 被引量:1
2
作者 Yao-jie LU Mu XU +3 位作者 Chang-xing WU De-yi XIONG Hong-ji WANG Jin-song SU 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2018年第5期651-661,共11页
A lack of labeled corpora obstructs the research progress on implicit discourse relation recognition (DRR) for Chinese, while there are some available discourse corpora in other languages, such as English. In this p... A lack of labeled corpora obstructs the research progress on implicit discourse relation recognition (DRR) for Chinese, while there are some available discourse corpora in other languages, such as English. In this paper, we propose a cross-lingual implicit DRR framework that exploits an available English corpus for the Chinese DRR task. We use machine translation to generate Chinese instances from a labeled English discourse corpus. In this way, each instance has two independent views: Chinese and English views. Then we train two classifiers in Chinese and English in a co-training way, which exploits unlabeled Chinese data to implement better implicit DRR for Chinese. Experimental results demonstrate the effectiveness of our method. 展开更多
关键词 Cross-lingual Implicit discourse relation recognition CO-TRAINING
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部