With the development of human-computer interaction technology,brain-computer interface(BCI)has been widely used in medical,entertainment,military,and other fields.Imagined speech is the latest paradigm of BCI and repr...With the development of human-computer interaction technology,brain-computer interface(BCI)has been widely used in medical,entertainment,military,and other fields.Imagined speech is the latest paradigm of BCI and represents the mental process of imagining a word without making a sound or making clear facial movements.Imagined speech allows patients with physical disabilities to communicate with the outside world and use smart devices through imagination.Imagined speech can meet the needs of more complex manipulative tasks considering its more intuitive features.This study proposes a classification method of imagined speech Electroencephalogram(EEG)signals with discrete wavelet transform(DWT)and support vector machine(SVM).An open dataset that consists of 15 subjects imagining speaking six different words,namely,up,down,left,right,backward,and forward,is used.The objective is to improve the classification accuracy of imagined speech BCI system.The features of EEG signals are first extracted by DWT,and the imagined words are clas-sified by SVM with the above features.Experimental results show that the proposed method achieves an average accuracy of 61.69%,which is better than those of existing methods for classifying imagined speech tasks.展开更多
Some factors influencing the intelligibility of the enhanced whisper in the joint time-frequency domain are evaluated. Specifically, both the spectrum density and different regions of the enhanced spectrum are analyze...Some factors influencing the intelligibility of the enhanced whisper in the joint time-frequency domain are evaluated. Specifically, both the spectrum density and different regions of the enhanced spectrum are analyzed. Experimental results show that for a spectrum of some density, the joint time-frequency gain-modification based speech enhancement algorithm achieves significant improvement in intelligibility. Additionally, the spectrum region where the estimated spectrum is smaller than the clean spectrum, is the most important region contributing to intelligibility improvement for the enhanced whisper. The spectrum region where the estimated spectrum is larger than twice the size of the clean spectrum is detrimental to speech intelligibility perception within the whisper context.展开更多
基金supported in part by the Fundamental Research Funds for the Central Universities(xcxjh20210104).
文摘With the development of human-computer interaction technology,brain-computer interface(BCI)has been widely used in medical,entertainment,military,and other fields.Imagined speech is the latest paradigm of BCI and represents the mental process of imagining a word without making a sound or making clear facial movements.Imagined speech allows patients with physical disabilities to communicate with the outside world and use smart devices through imagination.Imagined speech can meet the needs of more complex manipulative tasks considering its more intuitive features.This study proposes a classification method of imagined speech Electroencephalogram(EEG)signals with discrete wavelet transform(DWT)and support vector machine(SVM).An open dataset that consists of 15 subjects imagining speaking six different words,namely,up,down,left,right,backward,and forward,is used.The objective is to improve the classification accuracy of imagined speech BCI system.The features of EEG signals are first extracted by DWT,and the imagined words are clas-sified by SVM with the above features.Experimental results show that the proposed method achieves an average accuracy of 61.69%,which is better than those of existing methods for classifying imagined speech tasks.
基金The National Natural Science Foundation of China(No.61301295,61273266,61301219,61201326,61003131)the Natural Science Foundation of Anhui Province(No.1308085QF100,1408085MF113)+2 种基金the Natural Science Foundation of Jiangsu Province(No.BK20130241)the Natural Science Foundation of Higher Education Institutions of Jiangsu Province(No.12KJB510021)the Doctoral Fund of Anhui University
文摘Some factors influencing the intelligibility of the enhanced whisper in the joint time-frequency domain are evaluated. Specifically, both the spectrum density and different regions of the enhanced spectrum are analyzed. Experimental results show that for a spectrum of some density, the joint time-frequency gain-modification based speech enhancement algorithm achieves significant improvement in intelligibility. Additionally, the spectrum region where the estimated spectrum is smaller than the clean spectrum, is the most important region contributing to intelligibility improvement for the enhanced whisper. The spectrum region where the estimated spectrum is larger than twice the size of the clean spectrum is detrimental to speech intelligibility perception within the whisper context.