期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Fault diagnosis method for an Aeroengine Based on Independent Component Analysis and the Discrete Hidden Markov Model 被引量:1
1
作者 MA Jian-cang ZENG Yuan 《International Journal of Plant Engineering and Management》 2009年第4期193-201,共9页
The vibration signals of an aeroengine are a very important information source for fault diagnosis and condition monitoring. Considering the nonstationarity and low repeatability of the vibration signals, it is necess... The vibration signals of an aeroengine are a very important information source for fault diagnosis and condition monitoring. Considering the nonstationarity and low repeatability of the vibration signals, it is necessary to find a corresponding method for feature extraction and fault recognition. In this paper, based on Independent Component Analysis (ICA) and the Discrete Hidden Markov Model (DHMM), a new fault diagnosis approach named ICA-DHMM is proposed. In this method, ICA separates the source signals from the mixed vibration signals and then extracts features from them, DHMM works as a classifier to recognize the conditions of the aeroengine. Compared with the DHMM, which use the amplitude spectrum of mixed signals as feature parameters, experimental results show this method has higher diagnosis accuracy. 展开更多
关键词 independent component analysis (ICA) feature extraction discrete hidden markov model DHMM) AEROENGINE fault diagnosis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部