This paper is concerned with the problem of stabilization of the Roesser type discrete-time nonlinear 2-D system that plays an important role in many practical applications. First, a discrete-time 2-D T-S fuzzy model ...This paper is concerned with the problem of stabilization of the Roesser type discrete-time nonlinear 2-D system that plays an important role in many practical applications. First, a discrete-time 2-D T-S fuzzy model is proposed to represent the underlying nonlinear 2-D system. Second, new quadratic stabilization conditions are proposed by applying relaxed quadratic stabilization technique for 2-D case. Third, for sake of further reducing conservatism, new non-quadratic stabilization conditions are also proposed by applying a new parameter-dependent Lyapunov function, matrix transformation technique, and relaxed technique for the underlying discrete-time 2-D T-S fuzzy system. Finally, a numerical example is provided to illustrate the effectiveness of the proposed results.展开更多
The problems of stability and stabilization for the discrete Takagi-Sugeno(T-S) fuzzy time-delay system are investigated.By constructing a discrete piecewise Lyapunov-Krasovskii function(PLKF) in each maximal over...The problems of stability and stabilization for the discrete Takagi-Sugeno(T-S) fuzzy time-delay system are investigated.By constructing a discrete piecewise Lyapunov-Krasovskii function(PLKF) in each maximal overlapped-rules group(MORG),a new sufficient stability condition for the open-loop discrete T-S fuzzy time-delay system is proposed and proved.Then the systematic design of the fuzzy controller is investigated via the parallel distributed compensation control scheme,and a new stabilization condition for the closed-loop discrete T-S fuzzy time-delay system is proposed.The above two sufficient conditions only require finding common matrices in each MORG.Compared with the common Lyapunov-Krasovskii function(CLKF) approach and the fuzzy Lyapunov-Krasovskii function(FLKF) approach,these proposed sufficient conditions can not only overcome the defect of finding common matrices in the whole feasible region but also largely reduce the number of linear matrix inequalities to be solved.Finally,simulation examples show that the proposed PLKF approach is effective.展开更多
This article deals with the robust stability analysis and passivity of uncertain discrete-time Takagi- Sugeno (T-S) fuzzy systems with time delays. The T-S fuzzy model with parametric uncertainties can approximate n...This article deals with the robust stability analysis and passivity of uncertain discrete-time Takagi- Sugeno (T-S) fuzzy systems with time delays. The T-S fuzzy model with parametric uncertainties can approximate nonlinear uncertain systems at any precision. A sufficient condition on the existence of robust passive controller is established based on the Lyapunov stability theory. With the help of linear matrix inequality (LMI) method, robust passive controllers are designed so that the closed-loop system is robust stable and strictly passive. Furthermore, a convex optimization problem with LMI constraints is formulated to design robust passive controllers with the maximum dissipation rate. A numerical example illustrates the validity of the proposed method.展开更多
A robust stabilization problem is considered for time delay nonlinear discrete-time systems based on T-S fuzzy model. A necessary and sufficient condition for the existence of such controllers is given through Lyapuno...A robust stabilization problem is considered for time delay nonlinear discrete-time systems based on T-S fuzzy model. A necessary and sufficient condition for the existence of such controllers is given through Lyapunov stability theorem. And it is further shown that this condition is equivalent to the solvability of a certain linear matrix inequality, which can be solved easily by using the LMI toolbox of Matlab. At last, an illustrative example of truck-trailer is presented to show the feasibility and effectiveness of the proposed method.展开更多
The robust H∞ control problem of norm bounded uncertain discrete Takagi-Sugeno (T-S) fuzzy systems with state delay is addressed. First, by constructing an appropriate basis-dependent Lyapunov-Krasovskii function, ...The robust H∞ control problem of norm bounded uncertain discrete Takagi-Sugeno (T-S) fuzzy systems with state delay is addressed. First, by constructing an appropriate basis-dependent Lyapunov-Krasovskii function, a new delay-dependent sufficient condition on robust H∞-disturbance attenuation is presented, in which both robust stability and prescribed H∞ performance are guaranteed to be achieved. Then based on the condition, a delay-dependent robust Hoo controller design scheme is developed in term of a convex algorithm. Finally, examples are given to illustrate the effectiveness of the proposed method.展开更多
Time-delays,due to the information transmission between subsystems,naturally exist in large-scale systems and the existence of the delay is frequently a source of instability. This paper considers the problems of robu...Time-delays,due to the information transmission between subsystems,naturally exist in large-scale systems and the existence of the delay is frequently a source of instability. This paper considers the problems of robust non-fragile fuzzy control for a class of uncertain discrete nonlinear large-scale systems with time-delay and controller gain perturbations described by T-S fuzzy model. An equivalent T-S fuzzy model is represented for discrete-delay nonlinear large-scale systems. A sufficient condition for the existence of such non-fragile controllers is further derived via the Lyapunov function and the linear matrix inequality( LMI) approach. Simulation results demonstrate the feasibility and the effectiveness of the proposed design and the proper stabilization of the system in spite of controller gain variations and uncertainties.展开更多
基金Supported by National Natural Science Foundation of China (50977008, 60904017, 60774048, 60728307), the Funds for Creative Research Groups of China (60521003), the Program for Cheung Kong Scholars and Innovative Research Team in University (IRT0421), and the 111 Project (B08015), National High Technology Research and Development Program of China (863 Program) (2006AA04Z183)
文摘This paper is concerned with the problem of stabilization of the Roesser type discrete-time nonlinear 2-D system that plays an important role in many practical applications. First, a discrete-time 2-D T-S fuzzy model is proposed to represent the underlying nonlinear 2-D system. Second, new quadratic stabilization conditions are proposed by applying relaxed quadratic stabilization technique for 2-D case. Third, for sake of further reducing conservatism, new non-quadratic stabilization conditions are also proposed by applying a new parameter-dependent Lyapunov function, matrix transformation technique, and relaxed technique for the underlying discrete-time 2-D T-S fuzzy system. Finally, a numerical example is provided to illustrate the effectiveness of the proposed results.
基金supported in part by the Scientific Research Project of Heilongjiang Province Education Bureau(12541200)
文摘The problems of stability and stabilization for the discrete Takagi-Sugeno(T-S) fuzzy time-delay system are investigated.By constructing a discrete piecewise Lyapunov-Krasovskii function(PLKF) in each maximal overlapped-rules group(MORG),a new sufficient stability condition for the open-loop discrete T-S fuzzy time-delay system is proposed and proved.Then the systematic design of the fuzzy controller is investigated via the parallel distributed compensation control scheme,and a new stabilization condition for the closed-loop discrete T-S fuzzy time-delay system is proposed.The above two sufficient conditions only require finding common matrices in each MORG.Compared with the common Lyapunov-Krasovskii function(CLKF) approach and the fuzzy Lyapunov-Krasovskii function(FLKF) approach,these proposed sufficient conditions can not only overcome the defect of finding common matrices in the whole feasible region but also largely reduce the number of linear matrix inequalities to be solved.Finally,simulation examples show that the proposed PLKF approach is effective.
基金supported by the National Natural Science Foundation of China(60710002)Self-Planned Task of State Key Laboratory of Robotics and System(SKLRS200801A03).
文摘This article deals with the robust stability analysis and passivity of uncertain discrete-time Takagi- Sugeno (T-S) fuzzy systems with time delays. The T-S fuzzy model with parametric uncertainties can approximate nonlinear uncertain systems at any precision. A sufficient condition on the existence of robust passive controller is established based on the Lyapunov stability theory. With the help of linear matrix inequality (LMI) method, robust passive controllers are designed so that the closed-loop system is robust stable and strictly passive. Furthermore, a convex optimization problem with LMI constraints is formulated to design robust passive controllers with the maximum dissipation rate. A numerical example illustrates the validity of the proposed method.
基金Supported by National Natural Science Foundation of P. R. China (60274009)
文摘A robust stabilization problem is considered for time delay nonlinear discrete-time systems based on T-S fuzzy model. A necessary and sufficient condition for the existence of such controllers is given through Lyapunov stability theorem. And it is further shown that this condition is equivalent to the solvability of a certain linear matrix inequality, which can be solved easily by using the LMI toolbox of Matlab. At last, an illustrative example of truck-trailer is presented to show the feasibility and effectiveness of the proposed method.
文摘The robust H∞ control problem of norm bounded uncertain discrete Takagi-Sugeno (T-S) fuzzy systems with state delay is addressed. First, by constructing an appropriate basis-dependent Lyapunov-Krasovskii function, a new delay-dependent sufficient condition on robust H∞-disturbance attenuation is presented, in which both robust stability and prescribed H∞ performance are guaranteed to be achieved. Then based on the condition, a delay-dependent robust Hoo controller design scheme is developed in term of a convex algorithm. Finally, examples are given to illustrate the effectiveness of the proposed method.
文摘Time-delays,due to the information transmission between subsystems,naturally exist in large-scale systems and the existence of the delay is frequently a source of instability. This paper considers the problems of robust non-fragile fuzzy control for a class of uncertain discrete nonlinear large-scale systems with time-delay and controller gain perturbations described by T-S fuzzy model. An equivalent T-S fuzzy model is represented for discrete-delay nonlinear large-scale systems. A sufficient condition for the existence of such non-fragile controllers is further derived via the Lyapunov function and the linear matrix inequality( LMI) approach. Simulation results demonstrate the feasibility and the effectiveness of the proposed design and the proper stabilization of the system in spite of controller gain variations and uncertainties.