The problems of stability and stabilization for the discrete Takagi-Sugeno(T-S) fuzzy time-delay system are investigated.By constructing a discrete piecewise Lyapunov-Krasovskii function(PLKF) in each maximal over...The problems of stability and stabilization for the discrete Takagi-Sugeno(T-S) fuzzy time-delay system are investigated.By constructing a discrete piecewise Lyapunov-Krasovskii function(PLKF) in each maximal overlapped-rules group(MORG),a new sufficient stability condition for the open-loop discrete T-S fuzzy time-delay system is proposed and proved.Then the systematic design of the fuzzy controller is investigated via the parallel distributed compensation control scheme,and a new stabilization condition for the closed-loop discrete T-S fuzzy time-delay system is proposed.The above two sufficient conditions only require finding common matrices in each MORG.Compared with the common Lyapunov-Krasovskii function(CLKF) approach and the fuzzy Lyapunov-Krasovskii function(FLKF) approach,these proposed sufficient conditions can not only overcome the defect of finding common matrices in the whole feasible region but also largely reduce the number of linear matrix inequalities to be solved.Finally,simulation examples show that the proposed PLKF approach is effective.展开更多
This article deals with the robust stability analysis and passivity of uncertain discrete-time Takagi- Sugeno (T-S) fuzzy systems with time delays. The T-S fuzzy model with parametric uncertainties can approximate n...This article deals with the robust stability analysis and passivity of uncertain discrete-time Takagi- Sugeno (T-S) fuzzy systems with time delays. The T-S fuzzy model with parametric uncertainties can approximate nonlinear uncertain systems at any precision. A sufficient condition on the existence of robust passive controller is established based on the Lyapunov stability theory. With the help of linear matrix inequality (LMI) method, robust passive controllers are designed so that the closed-loop system is robust stable and strictly passive. Furthermore, a convex optimization problem with LMI constraints is formulated to design robust passive controllers with the maximum dissipation rate. A numerical example illustrates the validity of the proposed method.展开更多
This paper is concerned with the problem of observer-based fuzzy control design for discrete-time T-S fuzzy bilinear stochastic systems with infinite-distributed delays. Based on the piecewise quadratic Lyapunov funct...This paper is concerned with the problem of observer-based fuzzy control design for discrete-time T-S fuzzy bilinear stochastic systems with infinite-distributed delays. Based on the piecewise quadratic Lyapunov functional (PQLF), the fuzzy observer-basedcontrollers are designed for T-S fuzzy bilinear stochastic systems. It is shown that the stability in the mean square for discrete T-S fuzzy bilinear stochastic systems can be established if there exists a set of PQLF can be constructed and the fuzzy observer-based controller can be obtained by solving a set of nonlinear minimization problem involving linear matrix inequalities (LMIs) constraints. An iterative algorithm making use of sequential linear programming matrix method (SLPMM) to derive a single-step LMI condition for fuzzy observer-based control design. Finally, an illustrative example is provided to demonstrate the effectiveness of the results proposed in this paper.展开更多
This paper is concerned with the problem of stabilization of the Roesser type discrete-time nonlinear 2-D system that plays an important role in many practical applications. First, a discrete-time 2-D T-S fuzzy model ...This paper is concerned with the problem of stabilization of the Roesser type discrete-time nonlinear 2-D system that plays an important role in many practical applications. First, a discrete-time 2-D T-S fuzzy model is proposed to represent the underlying nonlinear 2-D system. Second, new quadratic stabilization conditions are proposed by applying relaxed quadratic stabilization technique for 2-D case. Third, for sake of further reducing conservatism, new non-quadratic stabilization conditions are also proposed by applying a new parameter-dependent Lyapunov function, matrix transformation technique, and relaxed technique for the underlying discrete-time 2-D T-S fuzzy system. Finally, a numerical example is provided to illustrate the effectiveness of the proposed results.展开更多
The robust H∞ control problem of norm bounded uncertain discrete Takagi-Sugeno (T-S) fuzzy systems with state delay is addressed. First, by constructing an appropriate basis-dependent Lyapunov-Krasovskii function, ...The robust H∞ control problem of norm bounded uncertain discrete Takagi-Sugeno (T-S) fuzzy systems with state delay is addressed. First, by constructing an appropriate basis-dependent Lyapunov-Krasovskii function, a new delay-dependent sufficient condition on robust H∞-disturbance attenuation is presented, in which both robust stability and prescribed H∞ performance are guaranteed to be achieved. Then based on the condition, a delay-dependent robust Hoo controller design scheme is developed in term of a convex algorithm. Finally, examples are given to illustrate the effectiveness of the proposed method.展开更多
This paper deals with the problem of guaranteed cost control for nonlinear systems with time-varying delays which is represented by Takagi-Sugeno (T-S) fuzzy models with time-varying delays.The derivatives of time-v...This paper deals with the problem of guaranteed cost control for nonlinear systems with time-varying delays which is represented by Takagi-Sugeno (T-S) fuzzy models with time-varying delays.The derivatives of time-varying delay are not necessary to be bounded.Based on the free weighting matrix method,sufficient conditions for the existence of fuzzy guaranteed cost controller via state feedback are given in terms of linear matrix inequalities (LMIs).A minimizing method is also proposed to search the suboptimal upper bound of the guaranteed cost function.The results are delay-dependent but contain delay-independent criteria as a special case.A numerical example is presented to demonstrate the effectiveness and less conservativeness of our work.展开更多
This paper focuses on a class of T-S fuzzy interconnected systems with time delays and time-varying parameter uncertainties. Observer-based output feedback decentralized controller is designed such that the closed-loo...This paper focuses on a class of T-S fuzzy interconnected systems with time delays and time-varying parameter uncertainties. Observer-based output feedback decentralized controller is designed such that the closed-loop interconnected system is asymptotically stable in the Lyapunov sense in probability for all admissible uncertainties and time delays. Sufficient conditions for robustly asymptotically stability of the systems are given in terms of a set of linear matrix inequalities (LMIs).展开更多
This paper focuses on the robust control issue for interval type-2 Takagi-Sugeno(IT2 T-S)fuzzy discrete systems with input delays and cyber attacks.The lower and upper membership functions are first utilized to IT2 fu...This paper focuses on the robust control issue for interval type-2 Takagi-Sugeno(IT2 T-S)fuzzy discrete systems with input delays and cyber attacks.The lower and upper membership functions are first utilized to IT2 fuzzy discrete systems to capture parameter uncertainties.By considering the influences of input delays and stochastic cyber attacks,a newly fuzzy robust controller is established.Afterward,the asymptotic stability sufficient conditions in form of LMIs for the IT2 closed-loop systems are given via establishing a Lyapunov-Krasovskii functional.Afterward,a solving algorithm for obtaining the controller gains is given.Finally,the effectiveness of the developed IT2 fuzzy method is verified by a numerical example.展开更多
This paper proposes a static-output-feedback based robust fuzzy wheelbase preview control algorithm for uncertain active suspensions with time delay and finite frequency constraint.Firstly,a Takagi-Sugeno(T-S)fuzzy au...This paper proposes a static-output-feedback based robust fuzzy wheelbase preview control algorithm for uncertain active suspensions with time delay and finite frequency constraint.Firstly,a Takagi-Sugeno(T-S)fuzzy augmented model is established to formulate the half-car active suspension system with consideration of time delay,sprung mass variation and wheelbase preview information.Secondly,in view of the resonation between human’s organs and vertical vibrations in the frequency range of 4–8 Hz,a finite frequency control criterion in terms of H∞norm is developed to improve ride comfort.Meanwhile,other mechanical constraints are also considered and satisfied via generalized H2 norm.Thirdly,in order to maintain the feasibility of the controller despite of some state variables are not online-measured,a two stage approach is adopted to derive a static output feedback controller.Finally,numerical simulation results illustrate the excellent performance of the proposed controller.展开更多
Delay-dependent robust H-infinity control for discrete-time Takagi-Sugeno (T-S) fuzzy systems with interval time-varying input delay is considered.By constructing a new Lyapunov-Krasovskii functional and using convex ...Delay-dependent robust H-infinity control for discrete-time Takagi-Sugeno (T-S) fuzzy systems with interval time-varying input delay is considered.By constructing a new Lyapunov-Krasovskii functional and using convex combination method,a delay-dependent condition is established,under which the resulted closed-loop systems via a fuzzy state feedback are robust asymptotically stable with given H-infinity norm bound.Then,an iterative algorithm based on the modified SLPMM algorithm is proposed to solve the fuzzy H-infinity controller.Finally,a numerical example is used to illustrate the effectiveness and feasibility of the approaches proposed.展开更多
The problem of global robust asymptotical stability for a class of Takagi-Sugeno fuzzy neural networks(TSFNN) with discontinuous activation functions and time delays is investigated by using Lyapunov stability theor...The problem of global robust asymptotical stability for a class of Takagi-Sugeno fuzzy neural networks(TSFNN) with discontinuous activation functions and time delays is investigated by using Lyapunov stability theory.Based on linear matrix inequalities(LMIs),we originally propose robust fuzzy control to guarantee the global robust asymptotical stability of TSFNNs.Compared with the existing literature,this paper removes the assumptions on the neuron activations such as Lipschitz conditions,bounded,monotonic increasing property or the right-limit value is bigger than the left one at the discontinuous point.Thus,the results are more general and wider.Finally,two numerical examples are given to show the effectiveness of the proposed stability results.展开更多
This paper discusses the delay-dependent exponential stability of a class of uncertain T-S fuzzy switched systems with time delay. The method is based on Lyapunov stability theorem and free weighting matrices approach...This paper discusses the delay-dependent exponential stability of a class of uncertain T-S fuzzy switched systems with time delay. The method is based on Lyapunov stability theorem and free weighting matrices approach. Two illustrative examples are given to demonstrate the effectiveness of the proposed method.展开更多
The problem of robust H∞ control for uncertain discrete-time Takagi and Sugeno (T-S) fuzzy networked control systems (NCSs) is investigated in this paper subject to state quantization. By taking into consideration ne...The problem of robust H∞ control for uncertain discrete-time Takagi and Sugeno (T-S) fuzzy networked control systems (NCSs) is investigated in this paper subject to state quantization. By taking into consideration network induced delays and packet dropouts, an improved model of network-based control is developed. A less conservative delay-dependent stability condition for the closed NCSs is derived by employing a fuzzy Lyapunov-Krasovskii functional. Robust H∞ fuzzy controller is constructed that guarantee asymptotic stabilization of the NCSs and expressed in LMI-based conditions. A numerical example illustrates the effectiveness of the developed technique.展开更多
A novel model, termed the standard neural network model (SNNM), is advanced to describe some delayed (or non-delayed) discrete-time intelligent systems composed of neural networks and Takagi and Sugeno (T-S) fuz...A novel model, termed the standard neural network model (SNNM), is advanced to describe some delayed (or non-delayed) discrete-time intelligent systems composed of neural networks and Takagi and Sugeno (T-S) fuzzy models. The SNNM is composed of a discrete-time linear dynamic system and a bounded static nonlinear operator. Based on the global asymptotic stability analysis of the SNNMs, linear and nonlinear dynamic output feedback controllers are designed for the SNNMs to stabilize the closed-loop systems, respectively. The control design equations are shown to be a set of linear matrix inequalities (LMIs) which can be easily solved by various convex optimization algorithms to determine the control signals. Most neural-network-based (or fuzzy) discrete-time intelligent systems with time delays or without time delays can be transformed into the SNNMs for controller synthesis in a unified way. Three application examples show that the SNNMs not only make controller synthesis of neural-network-based (or fuzzy) discrete-time intelligent systems much easier, but also provide a new approach to the synthesis of the controllers for the other type of nonlinear systems.展开更多
In this paper,adaptive dynamic surface control(DSC) is developed for a class of nonlinear systems with unknown discrete and distributed time-varying delays and unknown dead-zone.Fuzzy logic systems are used to approxi...In this paper,adaptive dynamic surface control(DSC) is developed for a class of nonlinear systems with unknown discrete and distributed time-varying delays and unknown dead-zone.Fuzzy logic systems are used to approximate the unknown nonlinear functions.Then,by combining the backstepping technique and the appropriate Lyapunov-Krasovskii functionals with the dynamic surface control approach,the adaptive fuzzy tracking controller is designed.Our development is able to eliminate the problem of 'explosion of complexity' inherent in the existing backstepping-based methods.The main advantages of our approach include:1) for the n-th-order nonlinear systems,only one parameter needs to be adjusted online in the controller design procedure,which reduces the computation burden greatly.Moreover,the input of the dead-zone with only one adjusted parameter is much simpler than the ones in the existing results;2) the proposed control scheme does not need to know the time delays and their upper bounds.It is proven that the proposed design method is able to guarantee that all the signals in the closed-loop system are bounded and the tracking error is smaller than a prescribed error bound,Finally,simulation results demonstrate the effectiveness of the proposed approach.展开更多
Purpose–The purpose of this paper is to deal with the stabilization of the continuous-time TakagiSugeno(TS)fuzzy models by using their discretized models.Design/methodology/approach–In this case,a discrete model is...Purpose–The purpose of this paper is to deal with the stabilization of the continuous-time TakagiSugeno(TS)fuzzy models by using their discretized models.Design/methodology/approach–In this case,a discrete model is obtained from the discretization of the continuous TS fuzzy model.The gains obtained from a non-parallel distributed compensation controller ensuring the stabilization of the discrete model are used to check if the discrete control law used in the continuous time without any zero-order hold can stabilize the continuous TS model.Findings–This method is compared to another published method.Originality/value–Therefore,the originality of this paper consists in the fusion of the two continuous and discrete cases to obtain new stabilization conditions in the continuous case.Simulation examples show the interest of the proposed approach.展开更多
基金supported in part by the Scientific Research Project of Heilongjiang Province Education Bureau(12541200)
文摘The problems of stability and stabilization for the discrete Takagi-Sugeno(T-S) fuzzy time-delay system are investigated.By constructing a discrete piecewise Lyapunov-Krasovskii function(PLKF) in each maximal overlapped-rules group(MORG),a new sufficient stability condition for the open-loop discrete T-S fuzzy time-delay system is proposed and proved.Then the systematic design of the fuzzy controller is investigated via the parallel distributed compensation control scheme,and a new stabilization condition for the closed-loop discrete T-S fuzzy time-delay system is proposed.The above two sufficient conditions only require finding common matrices in each MORG.Compared with the common Lyapunov-Krasovskii function(CLKF) approach and the fuzzy Lyapunov-Krasovskii function(FLKF) approach,these proposed sufficient conditions can not only overcome the defect of finding common matrices in the whole feasible region but also largely reduce the number of linear matrix inequalities to be solved.Finally,simulation examples show that the proposed PLKF approach is effective.
基金supported by the National Natural Science Foundation of China(60710002)Self-Planned Task of State Key Laboratory of Robotics and System(SKLRS200801A03).
文摘This article deals with the robust stability analysis and passivity of uncertain discrete-time Takagi- Sugeno (T-S) fuzzy systems with time delays. The T-S fuzzy model with parametric uncertainties can approximate nonlinear uncertain systems at any precision. A sufficient condition on the existence of robust passive controller is established based on the Lyapunov stability theory. With the help of linear matrix inequality (LMI) method, robust passive controllers are designed so that the closed-loop system is robust stable and strictly passive. Furthermore, a convex optimization problem with LMI constraints is formulated to design robust passive controllers with the maximum dissipation rate. A numerical example illustrates the validity of the proposed method.
文摘This paper is concerned with the problem of observer-based fuzzy control design for discrete-time T-S fuzzy bilinear stochastic systems with infinite-distributed delays. Based on the piecewise quadratic Lyapunov functional (PQLF), the fuzzy observer-basedcontrollers are designed for T-S fuzzy bilinear stochastic systems. It is shown that the stability in the mean square for discrete T-S fuzzy bilinear stochastic systems can be established if there exists a set of PQLF can be constructed and the fuzzy observer-based controller can be obtained by solving a set of nonlinear minimization problem involving linear matrix inequalities (LMIs) constraints. An iterative algorithm making use of sequential linear programming matrix method (SLPMM) to derive a single-step LMI condition for fuzzy observer-based control design. Finally, an illustrative example is provided to demonstrate the effectiveness of the results proposed in this paper.
基金Supported by National Natural Science Foundation of China (50977008, 60904017, 60774048, 60728307), the Funds for Creative Research Groups of China (60521003), the Program for Cheung Kong Scholars and Innovative Research Team in University (IRT0421), and the 111 Project (B08015), National High Technology Research and Development Program of China (863 Program) (2006AA04Z183)
文摘This paper is concerned with the problem of stabilization of the Roesser type discrete-time nonlinear 2-D system that plays an important role in many practical applications. First, a discrete-time 2-D T-S fuzzy model is proposed to represent the underlying nonlinear 2-D system. Second, new quadratic stabilization conditions are proposed by applying relaxed quadratic stabilization technique for 2-D case. Third, for sake of further reducing conservatism, new non-quadratic stabilization conditions are also proposed by applying a new parameter-dependent Lyapunov function, matrix transformation technique, and relaxed technique for the underlying discrete-time 2-D T-S fuzzy system. Finally, a numerical example is provided to illustrate the effectiveness of the proposed results.
文摘The robust H∞ control problem of norm bounded uncertain discrete Takagi-Sugeno (T-S) fuzzy systems with state delay is addressed. First, by constructing an appropriate basis-dependent Lyapunov-Krasovskii function, a new delay-dependent sufficient condition on robust H∞-disturbance attenuation is presented, in which both robust stability and prescribed H∞ performance are guaranteed to be achieved. Then based on the condition, a delay-dependent robust Hoo controller design scheme is developed in term of a convex algorithm. Finally, examples are given to illustrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(No.60804011,60474058)the Science and Technology Project of Liaoning Provincial Education Department
文摘This paper deals with the problem of guaranteed cost control for nonlinear systems with time-varying delays which is represented by Takagi-Sugeno (T-S) fuzzy models with time-varying delays.The derivatives of time-varying delay are not necessary to be bounded.Based on the free weighting matrix method,sufficient conditions for the existence of fuzzy guaranteed cost controller via state feedback are given in terms of linear matrix inequalities (LMIs).A minimizing method is also proposed to search the suboptimal upper bound of the guaranteed cost function.The results are delay-dependent but contain delay-independent criteria as a special case.A numerical example is presented to demonstrate the effectiveness and less conservativeness of our work.
基金This work was supported by the National Nature Science Foundation of China (No. 60474038, No.70431002)the NSF for Distinguished Young Scholars of P. R.China (No. 60225013)
文摘This paper focuses on a class of T-S fuzzy interconnected systems with time delays and time-varying parameter uncertainties. Observer-based output feedback decentralized controller is designed such that the closed-loop interconnected system is asymptotically stable in the Lyapunov sense in probability for all admissible uncertainties and time delays. Sufficient conditions for robustly asymptotically stability of the systems are given in terms of a set of linear matrix inequalities (LMIs).
基金This research was supported by the National Natural Science Foundation of China under Grant No.61903167.
文摘This paper focuses on the robust control issue for interval type-2 Takagi-Sugeno(IT2 T-S)fuzzy discrete systems with input delays and cyber attacks.The lower and upper membership functions are first utilized to IT2 fuzzy discrete systems to capture parameter uncertainties.By considering the influences of input delays and stochastic cyber attacks,a newly fuzzy robust controller is established.Afterward,the asymptotic stability sufficient conditions in form of LMIs for the IT2 closed-loop systems are given via establishing a Lyapunov-Krasovskii functional.Afterward,a solving algorithm for obtaining the controller gains is given.Finally,the effectiveness of the developed IT2 fuzzy method is verified by a numerical example.
基金supported by the National Natural Science Foundation of China(51705084)the Natural Science Foundation of Guangdong Province(2018A030313999,2019A1515011602)+6 种基金the Fundamental Research Funds for the Central Universities(N2003032)the Opening Project of Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced ManufacturingSouth China University of Technology(2019kfkt06,2020kfkt05)the Research Grants of the University of Macao(MYRG2019-00028-FST)Guangdong Regular Institutions of Characteristic Innovation Project(2017KTSCX176)Key Laboratory of Robotics and Intelligent Equipment of Guangdong Regular Institutions of Higher Education(2017KSYS009)the National Key Research and Development Program of China(2017YFB1300200,2017YFB1300203)。
文摘This paper proposes a static-output-feedback based robust fuzzy wheelbase preview control algorithm for uncertain active suspensions with time delay and finite frequency constraint.Firstly,a Takagi-Sugeno(T-S)fuzzy augmented model is established to formulate the half-car active suspension system with consideration of time delay,sprung mass variation and wheelbase preview information.Secondly,in view of the resonation between human’s organs and vertical vibrations in the frequency range of 4–8 Hz,a finite frequency control criterion in terms of H∞norm is developed to improve ride comfort.Meanwhile,other mechanical constraints are also considered and satisfied via generalized H2 norm.Thirdly,in order to maintain the feasibility of the controller despite of some state variables are not online-measured,a two stage approach is adopted to derive a static output feedback controller.Finally,numerical simulation results illustrate the excellent performance of the proposed controller.
基金supported by the National Natural Science Foundation of China (No. 60634020)
文摘Delay-dependent robust H-infinity control for discrete-time Takagi-Sugeno (T-S) fuzzy systems with interval time-varying input delay is considered.By constructing a new Lyapunov-Krasovskii functional and using convex combination method,a delay-dependent condition is established,under which the resulted closed-loop systems via a fuzzy state feedback are robust asymptotically stable with given H-infinity norm bound.Then,an iterative algorithm based on the modified SLPMM algorithm is proposed to solve the fuzzy H-infinity controller.Finally,a numerical example is used to illustrate the effectiveness and feasibility of the approaches proposed.
基金supported by the National Natural Science Foundation of China(6077504760835004)+2 种基金the National High Technology Research and Development Program of China(863 Program)(2007AA04Z244 2008AA04Z214)the Graduate Innovation Fundation of Hunan Province(CX2010B132)
文摘The problem of global robust asymptotical stability for a class of Takagi-Sugeno fuzzy neural networks(TSFNN) with discontinuous activation functions and time delays is investigated by using Lyapunov stability theory.Based on linear matrix inequalities(LMIs),we originally propose robust fuzzy control to guarantee the global robust asymptotical stability of TSFNNs.Compared with the existing literature,this paper removes the assumptions on the neuron activations such as Lipschitz conditions,bounded,monotonic increasing property or the right-limit value is bigger than the left one at the discontinuous point.Thus,the results are more general and wider.Finally,two numerical examples are given to show the effectiveness of the proposed stability results.
文摘This paper discusses the delay-dependent exponential stability of a class of uncertain T-S fuzzy switched systems with time delay. The method is based on Lyapunov stability theorem and free weighting matrices approach. Two illustrative examples are given to demonstrate the effectiveness of the proposed method.
文摘The problem of robust H∞ control for uncertain discrete-time Takagi and Sugeno (T-S) fuzzy networked control systems (NCSs) is investigated in this paper subject to state quantization. By taking into consideration network induced delays and packet dropouts, an improved model of network-based control is developed. A less conservative delay-dependent stability condition for the closed NCSs is derived by employing a fuzzy Lyapunov-Krasovskii functional. Robust H∞ fuzzy controller is constructed that guarantee asymptotic stabilization of the NCSs and expressed in LMI-based conditions. A numerical example illustrates the effectiveness of the developed technique.
基金the National Natural Science Foundation of China (Grant No. 60504024)the Zhejiang Provincial Natural Science Foundation of China (Grant No. Y106010)the Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP), China (Grant No. 20060335022)
文摘A novel model, termed the standard neural network model (SNNM), is advanced to describe some delayed (or non-delayed) discrete-time intelligent systems composed of neural networks and Takagi and Sugeno (T-S) fuzzy models. The SNNM is composed of a discrete-time linear dynamic system and a bounded static nonlinear operator. Based on the global asymptotic stability analysis of the SNNMs, linear and nonlinear dynamic output feedback controllers are designed for the SNNMs to stabilize the closed-loop systems, respectively. The control design equations are shown to be a set of linear matrix inequalities (LMIs) which can be easily solved by various convex optimization algorithms to determine the control signals. Most neural-network-based (or fuzzy) discrete-time intelligent systems with time delays or without time delays can be transformed into the SNNMs for controller synthesis in a unified way. Three application examples show that the SNNMs not only make controller synthesis of neural-network-based (or fuzzy) discrete-time intelligent systems much easier, but also provide a new approach to the synthesis of the controllers for the other type of nonlinear systems.
基金supported by National Natural Science Foundation of China (Nos. 60974139 and 60804021)Fundamental Research Funds for the Central Universities (No. 72103676)
文摘In this paper,adaptive dynamic surface control(DSC) is developed for a class of nonlinear systems with unknown discrete and distributed time-varying delays and unknown dead-zone.Fuzzy logic systems are used to approximate the unknown nonlinear functions.Then,by combining the backstepping technique and the appropriate Lyapunov-Krasovskii functionals with the dynamic surface control approach,the adaptive fuzzy tracking controller is designed.Our development is able to eliminate the problem of 'explosion of complexity' inherent in the existing backstepping-based methods.The main advantages of our approach include:1) for the n-th-order nonlinear systems,only one parameter needs to be adjusted online in the controller design procedure,which reduces the computation burden greatly.Moreover,the input of the dead-zone with only one adjusted parameter is much simpler than the ones in the existing results;2) the proposed control scheme does not need to know the time delays and their upper bounds.It is proven that the proposed design method is able to guarantee that all the signals in the closed-loop system are bounded and the tracking error is smaller than a prescribed error bound,Finally,simulation results demonstrate the effectiveness of the proposed approach.
文摘Purpose–The purpose of this paper is to deal with the stabilization of the continuous-time TakagiSugeno(TS)fuzzy models by using their discretized models.Design/methodology/approach–In this case,a discrete model is obtained from the discretization of the continuous TS fuzzy model.The gains obtained from a non-parallel distributed compensation controller ensuring the stabilization of the discrete model are used to check if the discrete control law used in the continuous time without any zero-order hold can stabilize the continuous TS model.Findings–This method is compared to another published method.Originality/value–Therefore,the originality of this paper consists in the fusion of the two continuous and discrete cases to obtain new stabilization conditions in the continuous case.Simulation examples show the interest of the proposed approach.