A general model of linearly stochastically coupled identical connected neural networks with hybrid coupling is proposed, which is composed of constant coupling, coupling discrete time-varying delay and coupling distri...A general model of linearly stochastically coupled identical connected neural networks with hybrid coupling is proposed, which is composed of constant coupling, coupling discrete time-varying delay and coupling distributed timevarying delay. All the coupling terms are subjected to stochastic disturbances described in terms of Brownian motion, which reflects a more realistic dynamical behaviour of coupled systems in practice. Based on a simple adaptive feedback controller and stochastic stability theory, several sufficient criteria are presented to ensure the synchronization of linearly stochastically coupled complex networks with coupling mixed time-varying delays. Finally, numerical simulations illustrated by scale-free complex networks verify the effectiveness of the proposed controllers.展开更多
Based on Krasnoselskii's fixed point theorem,matrix measure and functional analysis methods,some new sufficient conditions for the existence of periodic solutions of neutral functional differential equations with ...Based on Krasnoselskii's fixed point theorem,matrix measure and functional analysis methods,some new sufficient conditions for the existence of periodic solutions of neutral functional differential equations with distributed and discrete delays are obtained. Moreover,we construct an example to illustrate the feasibility of our results.展开更多
In this paper, the Lotka-Volterra competition system with discrete and distributed time delays is considered. By analyzing the characteristic equation of the linearized system, the local asymptotic stability of the po...In this paper, the Lotka-Volterra competition system with discrete and distributed time delays is considered. By analyzing the characteristic equation of the linearized system, the local asymptotic stability of the positive equilibrium is investigated. Moreover, we discover the delays don't effect the stability of the equilibrium in the delay system. Finally, we can conclude that the positive equilibrium is global asymptotically stable in the delay system.展开更多
In this paper, we investigate the dynamics and the global exponential stability of a new class of Hopfield neural network with time-varying and distributed delays. In fact, the properties of norms and the contraction ...In this paper, we investigate the dynamics and the global exponential stability of a new class of Hopfield neural network with time-varying and distributed delays. In fact, the properties of norms and the contraction principle are adjusted to ensure the existence as well as the uniqueness of the pseudo almost periodic solution, which is also its derivative pseudo almost periodic. This results are without resorting to the theory of exponential dichotomy. Furthermore, by employing the suitable Lyapunov function, some delayindependent sufficient conditions are derived for exponential convergence. The main originality lies in the fact that spaces considered in this paper generalize the notion of periodicity and almost periodicity. Lastly, two examples are given to demonstrate the validity of the proposed theoretical results.展开更多
A discrete predictor-based control method is developed for a class of linear time-invariant networked control systems with a sensor-to-controller time-varying delay and a controller-to-actuator uncertain constant dela...A discrete predictor-based control method is developed for a class of linear time-invariant networked control systems with a sensor-to-controller time-varying delay and a controller-to-actuator uncertain constant delay,which can be potentially applied to vision-based control systems.The control scheme is composed of a state prediction and a discrete predictor-based controller.The state prediction is used to compensate for the effect of the sensor-to-controller delay,and the system can be stabilized by the discrete predictor-based controller.Moreover,it is shown that the control scheme is also robust with respect to slight message rejections.Finally,the main theoretical results are illustrated by simulation results and experimental results based on a networked visual servo inverted pendulum system.展开更多
The robust stability of uncertain linear degenerate systems with discrete and distributed delays is studied in this paper. The uncertainties under consideration are norm bounded, and possibly time varying. A novel rob...The robust stability of uncertain linear degenerate systems with discrete and distributed delays is studied in this paper. The uncertainties under consideration are norm bounded, and possibly time varying. A novel robust stability criterion of the system is derived by constructing Lyapunov functions. The degenerate systems are transformed to a descriptor system and the stability criteria are formulated in the form of a linear matrix inequality (LMI). Therefore, it is easy to check the robust stability of the degenerate systems by using this method. Numerical examples are also worked out to illustrate the obtained results.展开更多
This paper studies the distributed synchronization control problem of a class of stochastic dynamical systems with time-varying delays and random noise via randomly occurring control. The activation of the distributed...This paper studies the distributed synchronization control problem of a class of stochastic dynamical systems with time-varying delays and random noise via randomly occurring control. The activation of the distributed adaptive controller and the update of the control gain designed in this paper all happen randomly. Based on the Lyapunov stability theory, LaSalle invariance principle, combined with the use of the properties of the matrix Kronecker product, stochastic differential equation theory and other related tools, by constructing the appropriate Lyapunov functional, the criterion for the distributed synchronization of this type of stochastic complex networks in mean square is obtained.展开更多
In this paper, the robust H∞control problem for a class of stochastic systems with interval time-varying and distributed delays is discussed. The system under study involves parameter uncertainty, stochastic disturba...In this paper, the robust H∞control problem for a class of stochastic systems with interval time-varying and distributed delays is discussed. The system under study involves parameter uncertainty, stochastic disturbance, interval time-varying,and distributed delay. The aim is to design a delay-dependent robust H∞control which ensures the robust asymptotic stability of the given system and to express it in the form of linear matrix inequalities(LMIs). Numerical examples are given to demonstrate the effectiveness of the proposed method. The results are also compared with the existing results to show its conservativeness.展开更多
Stochastic switched epidemic systems with a discrete or distributed time delay are constructed and investigated. By the Lyapunov method and lto's differential rule, the existence and uniqueness of global positive sol...Stochastic switched epidemic systems with a discrete or distributed time delay are constructed and investigated. By the Lyapunov method and lto's differential rule, the existence and uniqueness of global positive solution of each system is proved. And stability conditions of the disease-free equilibrium of the systems are obtained. Numerical simulations are presented to illustrate the results.展开更多
Nowadays, distributed optimization algorithms are widely used in various complex networks. In order to expand the theory of distributed optimization algorithms in the direction of directed graph, the distributed conve...Nowadays, distributed optimization algorithms are widely used in various complex networks. In order to expand the theory of distributed optimization algorithms in the direction of directed graph, the distributed convex optimization problem with time-varying delays and switching topologies in the case of directed graph topology is studied. The event-triggered communication mechanism is adopted, that is, the communication between agents is determined by the trigger conditions, and the information exchange is carried out only when the conditions are met. Compared with continuous communication, this greatly saves network resources and reduces communication cost. Using Lyapunov-Krasovskii function method and inequality analysis, a new sufficient condition is proposed to ensure that the agent state finally reaches the optimal state. The upper bound of the maximum allowable delay is given. In addition, Zeno behavior will be proved not to exist during the operation of the algorithm. Finally, a simulation example is given to illustrate the correctness of the results in this paper.展开更多
The robust stability and robust stabilization problems for discrete singular systems with interval time-varying delay and linear fractional uncertainty are discussed. A new delay-dependent criterion is established for...The robust stability and robust stabilization problems for discrete singular systems with interval time-varying delay and linear fractional uncertainty are discussed. A new delay-dependent criterion is established for the nominal discrete singular delay systems to be regular, causal and stable by employing the linear matrix inequality (LMI) approach. It is shown that the newly proposed criterion can provide less conservative results than some existing ones. Then, with this criterion, the problems of robust stability and robust stabilization for uncertain discrete singular delay systems are solved, and the delay-dependent LMI conditions are obtained. Finally, numerical examples are given to illustrate the effectiveness of the proposed approach.展开更多
The design problem of delay-dependent robust control for uncertain discrete singular systems with time-varying delay is addressed in this paper. The uncertainty is assumed to be norm-bounded. By establishing a finite ...The design problem of delay-dependent robust control for uncertain discrete singular systems with time-varying delay is addressed in this paper. The uncertainty is assumed to be norm-bounded. By establishing a finite sum inequality based on quadratic terms, a new delay-dependent robust stability condition is derived and expressed in terms of linear matrix inequalities (LMIs). A suitable robust state feedback control law is presented, which guarantees that the resultant closed-loop system is regular, causal and stable for all admissible uncertainties. Numerical examples are given to demonstrate the applicability of the proposed method.展开更多
This paper studies the consensus problems for a group of agents with switching topology and time-varying communication delays, where the dynamics of agents is modeled as a high-order integrator. A linear distributed c...This paper studies the consensus problems for a group of agents with switching topology and time-varying communication delays, where the dynamics of agents is modeled as a high-order integrator. A linear distributed consensus protocol is proposed, which only depends on the agent's own information and its neighbors' partial information. By introducing a decomposition of the state vector and performing a state space transformation, the closed-loop dynamics of the multi-agent system is converted into two decoupled subsystems. Based on the decoupled subsystems, some sufficient conditions for the convergence to consensus are established, which provide the upper bounds on the admissible communication delays. Also, the explicit expression of the consensus state is derived. Moreover, the results on the consensus seeking of the group of high-order agents have been extended to a network of agents with dynamics modeled as a completely controllable linear time-invariant system. It is proved that the convergence to consensus of this network is equivalent to that of the group of high-order agents. Finally, some numerical examples are given to demonstrate the effectiveness of the main results.展开更多
This work was supported by National Natural Science Foun- dation of China (Nos. 60905009, 61004032, 61104119, 61174076, and 61172135), and Jiangsu Province Natural Science Foundation (Nos. SBK201240801 and BK20123...This work was supported by National Natural Science Foun- dation of China (Nos. 60905009, 61004032, 61104119, 61174076, and 61172135), and Jiangsu Province Natural Science Foundation (Nos. SBK201240801 and BK2012384.)展开更多
The robust stability of uncertain linear neutral systems with discrete and distributed delays is investigated. The uncertainties under consideration are norm bounded, and possibly time varying. By means of the equival...The robust stability of uncertain linear neutral systems with discrete and distributed delays is investigated. The uncertainties under consideration are norm bounded, and possibly time varying. By means of the equivalent equation of zero in the derivative of the Lyapunov-Krasovskli function, the proposed stability criteria are formulated in the form of a linear matrix inequality and it is easy to check the robust stability of the considered systems. Numerical examples demonstrate that the proposed criteria are effective.展开更多
This paper investigates pinning synchronization of discrete-time complex networks with differen t time-varying delays.An important lemma is presen ted and proved,t hen detailed analysis is given to yield some synchron...This paper investigates pinning synchronization of discrete-time complex networks with differen t time-varying delays.An important lemma is presen ted and proved,t hen detailed analysis is given to yield some synchronization criteria for this kind of net works.The results provide an effective way to synchronize discrete-time complex networks by reducing control cost.Furthermore,these theoretical results are illustrated by a complex network via two kinds of pinning schemes.Numerical simulations verify the feasibil计y of the proposed methods.展开更多
This paper is concerned with the optimal linear quadratic Gaussian(LQG)control problem for discrete time-varying system with multiplicative noise and multiple state delays.The main contributions are twofolds.First,in ...This paper is concerned with the optimal linear quadratic Gaussian(LQG)control problem for discrete time-varying system with multiplicative noise and multiple state delays.The main contributions are twofolds.First,in virtue of Pontryagin’s maximum principle,we solve the forward and backward stochastic difference equations(FBSDEs)and show the relationship between the state and the costate.Second,based on the solution to the FBSDEs and the coupled difference Riccati equations,the necessary and sufficient condition for the optimal problem is obtained.Meanwhile,an explicit analytical expression is given for the optimal LQG controller.Numerical examples are shown to illustrate the effectiveness of the proposed algorithm.展开更多
Purpose – The purpose of this paper is to study the existence and exponential stability of anti-periodicsolutions of a class of shunting inhibitory cellular neural networks (SICNNs) with time-varying delays andcontin...Purpose – The purpose of this paper is to study the existence and exponential stability of anti-periodicsolutions of a class of shunting inhibitory cellular neural networks (SICNNs) with time-varying delays andcontinuously distributed delays.Design/methodology/approach – The inequality technique and Lyapunov functional method are applied.Findings – Sufficient conditions are obtained to ensure that all solutions of the networks convergeexponentially to the anti-periodic solution, which are new and complement previously known results.Originality/value – There are few papers that deal with the anti-periodic solutions of delayed SICNNs withthe form negative feedback – aij(t)αij(xij(t)).展开更多
The problem of delay-dependent robust stability for uncertain linear singular neutral systems with time-varying and distributed delays is investigated. The uncertainties under consideration are norm bounded,and possib...The problem of delay-dependent robust stability for uncertain linear singular neutral systems with time-varying and distributed delays is investigated. The uncertainties under consideration are norm bounded,and possibly time varying. Some new stability criteria,which are simpler and less conservative than existing results,are derived based on a new class of Lyapunov-Krasovskii functionals combined with the descriptor model transformation and the decomposition technique of coeffcient matrix and formulated in...展开更多
This paper is concerned with the distributed resilient fusion filtering(DRFF)problem for a class of time-varying multi-sensor nonlinear stochastic systems(MNSSs)with random sensor delays(RSDs).The phenomenon of the RS...This paper is concerned with the distributed resilient fusion filtering(DRFF)problem for a class of time-varying multi-sensor nonlinear stochastic systems(MNSSs)with random sensor delays(RSDs).The phenomenon of the RSDs is modeled by a set of random variables with certain statistical features.In addition,the nonlinear function is handled via Taylor expansion in order to deal with the nonlinear fusion filtering problem.The aim of the addressed issue is to propose a DRFF scheme for MNSSs such that,for both RSDs and estimator gain perturbations,certain upper bounds of estimation error covariance(EEC)are given and locally minimized at every sample time.In the light of the obtained local filters,a new DRFF algorithm is developed via the matrix-weighted fusion method.Furthermore,a sufficient condition is presented,which can guarantee that the local upper bound of the EEC is bounded.Finally,a numerical example is provided,which can show the usefulness of the developed DRFF approach.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 60874113)
文摘A general model of linearly stochastically coupled identical connected neural networks with hybrid coupling is proposed, which is composed of constant coupling, coupling discrete time-varying delay and coupling distributed timevarying delay. All the coupling terms are subjected to stochastic disturbances described in terms of Brownian motion, which reflects a more realistic dynamical behaviour of coupled systems in practice. Based on a simple adaptive feedback controller and stochastic stability theory, several sufficient criteria are presented to ensure the synchronization of linearly stochastically coupled complex networks with coupling mixed time-varying delays. Finally, numerical simulations illustrated by scale-free complex networks verify the effectiveness of the proposed controllers.
基金Supported by the National Natural Science Foundation of China(11071001)Supported by the NSF of Education Bureau of Anhui Province(KJ2009A005Z,KJ2010ZD02,2010SQRL159)+1 种基金Supported by the 211 Project of Anhui University(KJTD002B)Supported by the Natural Science Foundation of Anhui Province(1208085MA13)
文摘Based on Krasnoselskii's fixed point theorem,matrix measure and functional analysis methods,some new sufficient conditions for the existence of periodic solutions of neutral functional differential equations with distributed and discrete delays are obtained. Moreover,we construct an example to illustrate the feasibility of our results.
基金the Education Foundation of Henan Province(07110005)
文摘In this paper, the Lotka-Volterra competition system with discrete and distributed time delays is considered. By analyzing the characteristic equation of the linearized system, the local asymptotic stability of the positive equilibrium is investigated. Moreover, we discover the delays don't effect the stability of the equilibrium in the delay system. Finally, we can conclude that the positive equilibrium is global asymptotically stable in the delay system.
文摘In this paper, we investigate the dynamics and the global exponential stability of a new class of Hopfield neural network with time-varying and distributed delays. In fact, the properties of norms and the contraction principle are adjusted to ensure the existence as well as the uniqueness of the pseudo almost periodic solution, which is also its derivative pseudo almost periodic. This results are without resorting to the theory of exponential dichotomy. Furthermore, by employing the suitable Lyapunov function, some delayindependent sufficient conditions are derived for exponential convergence. The main originality lies in the fact that spaces considered in this paper generalize the notion of periodicity and almost periodicity. Lastly, two examples are given to demonstrate the validity of the proposed theoretical results.
基金supported by the China Scholarship Council(CSC)the National Natural Science Foundation of China(92067106)。
文摘A discrete predictor-based control method is developed for a class of linear time-invariant networked control systems with a sensor-to-controller time-varying delay and a controller-to-actuator uncertain constant delay,which can be potentially applied to vision-based control systems.The control scheme is composed of a state prediction and a discrete predictor-based controller.The state prediction is used to compensate for the effect of the sensor-to-controller delay,and the system can be stabilized by the discrete predictor-based controller.Moreover,it is shown that the control scheme is also robust with respect to slight message rejections.Finally,the main theoretical results are illustrated by simulation results and experimental results based on a networked visual servo inverted pendulum system.
文摘The robust stability of uncertain linear degenerate systems with discrete and distributed delays is studied in this paper. The uncertainties under consideration are norm bounded, and possibly time varying. A novel robust stability criterion of the system is derived by constructing Lyapunov functions. The degenerate systems are transformed to a descriptor system and the stability criteria are formulated in the form of a linear matrix inequality (LMI). Therefore, it is easy to check the robust stability of the degenerate systems by using this method. Numerical examples are also worked out to illustrate the obtained results.
文摘This paper studies the distributed synchronization control problem of a class of stochastic dynamical systems with time-varying delays and random noise via randomly occurring control. The activation of the distributed adaptive controller and the update of the control gain designed in this paper all happen randomly. Based on the Lyapunov stability theory, LaSalle invariance principle, combined with the use of the properties of the matrix Kronecker product, stochastic differential equation theory and other related tools, by constructing the appropriate Lyapunov functional, the criterion for the distributed synchronization of this type of stochastic complex networks in mean square is obtained.
基金Project supported by the Fund from the Department of Science and Technology(DST)(Grant No.SR/FTP/MS-039/2011)
文摘In this paper, the robust H∞control problem for a class of stochastic systems with interval time-varying and distributed delays is discussed. The system under study involves parameter uncertainty, stochastic disturbance, interval time-varying,and distributed delay. The aim is to design a delay-dependent robust H∞control which ensures the robust asymptotic stability of the given system and to express it in the form of linear matrix inequalities(LMIs). Numerical examples are given to demonstrate the effectiveness of the proposed method. The results are also compared with the existing results to show its conservativeness.
基金supported by the National Natural Science Foundation of China(60874114)
文摘Stochastic switched epidemic systems with a discrete or distributed time delay are constructed and investigated. By the Lyapunov method and lto's differential rule, the existence and uniqueness of global positive solution of each system is proved. And stability conditions of the disease-free equilibrium of the systems are obtained. Numerical simulations are presented to illustrate the results.
文摘Nowadays, distributed optimization algorithms are widely used in various complex networks. In order to expand the theory of distributed optimization algorithms in the direction of directed graph, the distributed convex optimization problem with time-varying delays and switching topologies in the case of directed graph topology is studied. The event-triggered communication mechanism is adopted, that is, the communication between agents is determined by the trigger conditions, and the information exchange is carried out only when the conditions are met. Compared with continuous communication, this greatly saves network resources and reduces communication cost. Using Lyapunov-Krasovskii function method and inequality analysis, a new sufficient condition is proposed to ensure that the agent state finally reaches the optimal state. The upper bound of the maximum allowable delay is given. In addition, Zeno behavior will be proved not to exist during the operation of the algorithm. Finally, a simulation example is given to illustrate the correctness of the results in this paper.
基金supported by Research Foundation of Education Bureau of Shannxi Province, PRC(No.2010JK400)
文摘The robust stability and robust stabilization problems for discrete singular systems with interval time-varying delay and linear fractional uncertainty are discussed. A new delay-dependent criterion is established for the nominal discrete singular delay systems to be regular, causal and stable by employing the linear matrix inequality (LMI) approach. It is shown that the newly proposed criterion can provide less conservative results than some existing ones. Then, with this criterion, the problems of robust stability and robust stabilization for uncertain discrete singular delay systems are solved, and the delay-dependent LMI conditions are obtained. Finally, numerical examples are given to illustrate the effectiveness of the proposed approach.
基金Project (Nos. 60434020 and 60604003) supported by the NationalNatural Science Foundation of China
文摘The design problem of delay-dependent robust control for uncertain discrete singular systems with time-varying delay is addressed in this paper. The uncertainty is assumed to be norm-bounded. By establishing a finite sum inequality based on quadratic terms, a new delay-dependent robust stability condition is derived and expressed in terms of linear matrix inequalities (LMIs). A suitable robust state feedback control law is presented, which guarantees that the resultant closed-loop system is regular, causal and stable for all admissible uncertainties. Numerical examples are given to demonstrate the applicability of the proposed method.
基金supported by the National Natural Science Foundation of China(No.60674050,60736022,10972002,60774089,60704039)
文摘This paper studies the consensus problems for a group of agents with switching topology and time-varying communication delays, where the dynamics of agents is modeled as a high-order integrator. A linear distributed consensus protocol is proposed, which only depends on the agent's own information and its neighbors' partial information. By introducing a decomposition of the state vector and performing a state space transformation, the closed-loop dynamics of the multi-agent system is converted into two decoupled subsystems. Based on the decoupled subsystems, some sufficient conditions for the convergence to consensus are established, which provide the upper bounds on the admissible communication delays. Also, the explicit expression of the consensus state is derived. Moreover, the results on the consensus seeking of the group of high-order agents have been extended to a network of agents with dynamics modeled as a completely controllable linear time-invariant system. It is proved that the convergence to consensus of this network is equivalent to that of the group of high-order agents. Finally, some numerical examples are given to demonstrate the effectiveness of the main results.
基金supported by National Natural Science Foundation of China(Nos.60905009,61004032,61104119,61174076,and61172135)Jiangsu Province Natural Science Foundation(Nos.SBK201240801and BK2012384.)
文摘This work was supported by National Natural Science Foun- dation of China (Nos. 60905009, 61004032, 61104119, 61174076, and 61172135), and Jiangsu Province Natural Science Foundation (Nos. SBK201240801 and BK2012384.)
文摘The robust stability of uncertain linear neutral systems with discrete and distributed delays is investigated. The uncertainties under consideration are norm bounded, and possibly time varying. By means of the equivalent equation of zero in the derivative of the Lyapunov-Krasovskli function, the proposed stability criteria are formulated in the form of a linear matrix inequality and it is easy to check the robust stability of the considered systems. Numerical examples demonstrate that the proposed criteria are effective.
基金supported by the National Natural Science Foundation of China under Grant Nos.61304022,61573262 and 61573011the Excellent Youth Foundation of Hunan Provincial Department of Education(16B141)
文摘This paper investigates pinning synchronization of discrete-time complex networks with differen t time-varying delays.An important lemma is presen ted and proved,t hen detailed analysis is given to yield some synchronization criteria for this kind of net works.The results provide an effective way to synchronize discrete-time complex networks by reducing control cost.Furthermore,these theoretical results are illustrated by a complex network via two kinds of pinning schemes.Numerical simulations verify the feasibil计y of the proposed methods.
文摘This paper is concerned with the optimal linear quadratic Gaussian(LQG)control problem for discrete time-varying system with multiplicative noise and multiple state delays.The main contributions are twofolds.First,in virtue of Pontryagin’s maximum principle,we solve the forward and backward stochastic difference equations(FBSDEs)and show the relationship between the state and the costate.Second,based on the solution to the FBSDEs and the coupled difference Riccati equations,the necessary and sufficient condition for the optimal problem is obtained.Meanwhile,an explicit analytical expression is given for the optimal LQG controller.Numerical examples are shown to illustrate the effectiveness of the proposed algorithm.
基金This work is supported by National Natural Science Foundation of China(No.61673008 and No.11261010)Project of High-level Innovative Talents of Guizhou Province((2016)5651)Major Research Project of The Innovation Group of The Education Department of Guizhou Province((2017)039).
文摘Purpose – The purpose of this paper is to study the existence and exponential stability of anti-periodicsolutions of a class of shunting inhibitory cellular neural networks (SICNNs) with time-varying delays andcontinuously distributed delays.Design/methodology/approach – The inequality technique and Lyapunov functional method are applied.Findings – Sufficient conditions are obtained to ensure that all solutions of the networks convergeexponentially to the anti-periodic solution, which are new and complement previously known results.Originality/value – There are few papers that deal with the anti-periodic solutions of delayed SICNNs withthe form negative feedback – aij(t)αij(xij(t)).
基金Supported by the National Natural Science Foundation of China (10771001)the Key Program of Ministry of Education of China (205068)the Foundation of Innovation Team of Anhui Univ
文摘The problem of delay-dependent robust stability for uncertain linear singular neutral systems with time-varying and distributed delays is investigated. The uncertainties under consideration are norm bounded,and possibly time varying. Some new stability criteria,which are simpler and less conservative than existing results,are derived based on a new class of Lyapunov-Krasovskii functionals combined with the descriptor model transformation and the decomposition technique of coeffcient matrix and formulated in...
基金This work was supported in part by the National Natural Science Foundation of China under Grant Nos.12171124,61873058,and 61673141the Natural Science Foundation of Heilongjiang Province of China under Grant No.ZD2022F003+1 种基金the Key Foundation of Educational Science Planning in Heilongjiang Province of China under Grant No.GJB1422069the Alexander von Humboldt Foundation of Germany。
文摘This paper is concerned with the distributed resilient fusion filtering(DRFF)problem for a class of time-varying multi-sensor nonlinear stochastic systems(MNSSs)with random sensor delays(RSDs).The phenomenon of the RSDs is modeled by a set of random variables with certain statistical features.In addition,the nonlinear function is handled via Taylor expansion in order to deal with the nonlinear fusion filtering problem.The aim of the addressed issue is to propose a DRFF scheme for MNSSs such that,for both RSDs and estimator gain perturbations,certain upper bounds of estimation error covariance(EEC)are given and locally minimized at every sample time.In the light of the obtained local filters,a new DRFF algorithm is developed via the matrix-weighted fusion method.Furthermore,a sufficient condition is presented,which can guarantee that the local upper bound of the EEC is bounded.Finally,a numerical example is provided,which can show the usefulness of the developed DRFF approach.