Aim To present an ASIC design of DA based 2 D IDCT. Methods\ In the design of 1 D IDCT is utilized a Chen based fast IDCT algorithm, and multiplier accumulators based on distributed algorithm contributes in reduc...Aim To present an ASIC design of DA based 2 D IDCT. Methods\ In the design of 1 D IDCT is utilized a Chen based fast IDCT algorithm, and multiplier accumulators based on distributed algorithm contributes in reducing the hardware amount and in enhancing the speed performance. Results and Conclusion\ VHDL simulation, synthesis and layout design of system are implemented. This 2 D IDCT ASIC design owns best timing performance when compared with other better designs internationally. Results of design prove to be excellent.展开更多
Traditional watermark embedding schemes inevitably modify the data in a host audio signal and lead to the degradation of the host signal.In this paper,a novel audio zero-watermarking algorithm based on discrete wavele...Traditional watermark embedding schemes inevitably modify the data in a host audio signal and lead to the degradation of the host signal.In this paper,a novel audio zero-watermarking algorithm based on discrete wavelet transform(DWT),discrete cosine transform(DCT),and singular value decomposition(SVD) is presented.The watermark is registered by performing SVD on the coefficients generated through DWT and DCT to avoid data modification and host signal degradation.Simulation results show that the proposed zero-watermarking algorithm is strongly robust to common signal processing methods such as requantization,MP3 compression,resampling,addition of white Gaussian noise,and low-pass filtering.展开更多
In doubly selective fading channels, the orthogonal frequency division multiplexing (OFDM) multicarrier system may fail. Chirp like basis (fractional Fourier transform-fractional cosine transform) may be used instead ...In doubly selective fading channels, the orthogonal frequency division multiplexing (OFDM) multicarrier system may fail. Chirp like basis (fractional Fourier transform-fractional cosine transform) may be used instead of complex exponential basis in this case to improve the system performance. However, in multicarrier transmission, the high peak to average power ratio (PAPR) of the transmitted signal is one of the difficult problems that face both the chirp and the exponential basis. In this paper, an evaluation for the PAPR performance of a multicarrier system based on the fractional cosine transform (FrCT) is introduced and then compared with DFrFT and FFT. Moreover, applying the SLAM technique over these systems is provided to understand the behaviour of these systems when applying SLAM. Simulations verify that this system obtains a better PAPR performance. Moreover, further PAPR reduction can be gained using the well-known PAPR reduction methods. Moreover, applying SLAM technique improves the performance of (dB) by 4 dB to 5 dB and all systems become as competitive to each other when SLAM is applied. Finally, BER performance comparison among OFDM, Discrete Cosine Transform MCM (DCT- MCM), Discrete Hartley Transform MCM (DHT-MCM), DFrFT-OCDM and DFrCT- OCDM MCM systems was done by means of simulation over 100,000 multicarrier blocks for each one and showed that our proposed scenario gave the best performance.展开更多
Multiple image watermarking is an advanced concept of singular watermarking techniques. The existing singular digital image watermarking techniques cannot obtain all the design goals, such as imperceptibility, robustn...Multiple image watermarking is an advanced concept of singular watermarking techniques. The existing singular digital image watermarking techniques cannot obtain all the design goals, such as imperceptibility, robustness, security, and capacity simultaneously with perfection. Hence, the multiple image watermarking technique is designed that embeds several watermarks into the same host image for conveying multiple information. This paper proposed a multiple image watermarking technique with Discrete Cosine Transform (DCT) for ensuring the low computational time for embedding, encryption, decryption as well as extraction of the watermark images. Here, DCT is used to ensure the visual quality of the host image, and a random binary matrix is used to improve the security of the digital image. We have given a basic framework for multiple image watermarking. Our experimental results show satisfactory performance.展开更多
A novel time-frequency domain interference excision technique is proposed. The technique is based on adaptive biorthogonal local discrete cosine trans form (BLDCT). It uses a redundant library of biorthogonal local d...A novel time-frequency domain interference excision technique is proposed. The technique is based on adaptive biorthogonal local discrete cosine trans form (BLDCT). It uses a redundant library of biorthogonal local discrete cosine bases and an efficient concave cost function to match the transform basis to the interfering signal. The main advantage of the algorithm over conventional trans form domain excision algorithms is that the basis functions are not fixed but ca n be adapted to the time-frequency structure of the interfering signal. It is w e ll suited to transform domain compression and suppression of various types of in terference. Compared to the discrete wavelet transform (DWT) that provides logar ithmic division of the frequency bands, the adaptive BLDCT can provide more flex ible frequency resolution. Thus it is more insensitive to variations of jamming frequency. Simulation results demonstrate the improved bit error rate (BER) perf ormance and the increased robustness of the receiver.展开更多
The Fourier transform is very important to numerous applications in science and engineering. However, its usefulness is hampered by its computational expense. In this paper, in an attempt to develop a faster method fo...The Fourier transform is very important to numerous applications in science and engineering. However, its usefulness is hampered by its computational expense. In this paper, in an attempt to develop a faster method for computing Fourier transforms, the authors present parallel implementations of two new algorithms developed for the type IV Discrete Cosine Transform (DCT-IV) which support the new interleaved fast Fourier transform method. The authors discuss the realizations of their implementations using two paradigms. The first involved commodity equipment and the Message-Passing Interface (MPI) library. The second utilized the RapidMind development platform and the Cell Broadband Engine (BE) processor. These experiments indicate that the authors' rotation-based algorithm is preferable to their lifting-based algorithm on the platforms tested, with increased efficiency demonstrated by their MPI implementation for large data sets. Finally, the authors outline future work by discussing an architecture-oriented method for computing DCT-IVs which promises further optimization. The results indicate a promising fresh direction in the search for efficient ways to compute Fourier transforms.展开更多
Discrete cosine transform (DCT) is frequently used in image and video signal processing due to its high energy compaction property. Humans are able to perceive and identify the information from slightly erroneous imag...Discrete cosine transform (DCT) is frequently used in image and video signal processing due to its high energy compaction property. Humans are able to perceive and identify the information from slightly erroneous images. It is enough to produce approximate outputs rather than absolute outputs which in turn reduce the circuit complexity. Numbers of applications like image and video processing need higher dimensional DCT algorithms. So the existing architectures of one dimensional (1D) approximate DCTs are reviewed and extended to two dimensional (2D) approximate DCTs. Approximate 2D multiplier-free DCT architectures are coded in Verilog, simulated in Modelsim to evaluate the correctness, synthesized to evaluate the performance and implemented in virtexE Field Programmable Gate Array (FPGA) kit. A comparative analysis of approximate 2D DCT architectures is carried out in terms of speed and area.展开更多
Steganography is a technique for hiding secret messages while sending and receiving communications through a cover item.From ancient times to the present,the security of secret or vital information has always been a s...Steganography is a technique for hiding secret messages while sending and receiving communications through a cover item.From ancient times to the present,the security of secret or vital information has always been a significant problem.The development of secure communication methods that keep recipient-only data transmissions secret has always been an area of interest.Therefore,several approaches,including steganography,have been developed by researchers over time to enable safe data transit.In this review,we have discussed image steganography based on Discrete Cosine Transform(DCT)algorithm,etc.We have also discussed image steganography based on multiple hashing algorithms like the Rivest–Shamir–Adleman(RSA)method,the Blowfish technique,and the hash-least significant bit(LSB)approach.In this review,a novel method of hiding information in images has been developed with minimal variance in image bits,making our method secure and effective.A cryptography mechanism was also used in this strategy.Before encoding the data and embedding it into a carry image,this review verifies that it has been encrypted.Usually,embedded text in photos conveys crucial signals about the content.This review employs hash table encryption on the message before hiding it within the picture to provide a more secure method of data transport.If the message is ever intercepted by a third party,there are several ways to stop this operation.A second level of security process implementation involves encrypting and decrypting steganography images using different hashing algorithms.展开更多
A novel color image encryption scheme is developed to enhance the security of encryption without increasing the complexity. Firstly, the plain color image is decomposed into three grayscale plain images, which are con...A novel color image encryption scheme is developed to enhance the security of encryption without increasing the complexity. Firstly, the plain color image is decomposed into three grayscale plain images, which are converted into the frequency domain coefficient matrices(FDCM) with discrete cosine transform(DCT) operation. After that, a twodimensional(2D) coupled chaotic system is developed and used to generate one group of embedded matrices and another group of encryption matrices, respectively. The embedded matrices are integrated with the FDCM to fulfill the frequency domain encryption, and then the inverse DCT processing is implemented to recover the spatial domain signal. Eventually,under the function of the encryption matrices and the proposed diagonal scrambling algorithm, the final color ciphertext is obtained. The experimental results show that the proposed method can not only ensure efficient encryption but also satisfy various sizes of image encryption. Besides, it has better performance than other similar techniques in statistical feature analysis, such as key space, key sensitivity, anti-differential attack, information entropy, noise attack, etc.展开更多
In recent years,there has been extensive research on object detection methods applied to optical remote sensing images utilizing convolutional neural networks.Despite these efforts,the detection of small objects in re...In recent years,there has been extensive research on object detection methods applied to optical remote sensing images utilizing convolutional neural networks.Despite these efforts,the detection of small objects in remote sensing remains a formidable challenge.The deep network structure will bring about the loss of object features,resulting in the loss of object features and the near elimination of some subtle features associated with small objects in deep layers.Additionally,the features of small objects are susceptible to interference from background features contained within the image,leading to a decline in detection accuracy.Moreover,the sensitivity of small objects to the bounding box perturbation further increases the detection difficulty.In this paper,we introduce a novel approach,Cross-Layer Fusion and Weighted Receptive Field-based YOLO(CAW-YOLO),specifically designed for small object detection in remote sensing.To address feature loss in deep layers,we have devised a cross-layer attention fusion module.Background noise is effectively filtered through the incorporation of Bi-Level Routing Attention(BRA).To enhance the model’s capacity to perceive multi-scale objects,particularly small-scale objects,we introduce a weightedmulti-receptive field atrous spatial pyramid poolingmodule.Furthermore,wemitigate the sensitivity arising from bounding box perturbation by incorporating the joint Normalized Wasserstein Distance(NWD)and Efficient Intersection over Union(EIoU)losses.The efficacy of the proposedmodel in detecting small objects in remote sensing has been validated through experiments conducted on three publicly available datasets.The experimental results unequivocally demonstrate the model’s pronounced advantages in small object detection for remote sensing,surpassing the performance of current mainstream models.展开更多
In the traditional incremental analysis update(IAU)process,all analysis increments are treated as constant forcing in a model’s prognostic equations over a certain time window.This approach effectively reduces high-f...In the traditional incremental analysis update(IAU)process,all analysis increments are treated as constant forcing in a model’s prognostic equations over a certain time window.This approach effectively reduces high-frequency oscillations introduced by data assimilation.However,as different scales of increments have unique evolutionary speeds and life histories in a numerical model,the traditional IAU scheme cannot fully meet the requirements of short-term forecasting for the damping of high-frequency noise and may even cause systematic drifts.Therefore,a multi-scale IAU scheme is proposed in this paper.Analysis increments were divided into different scale parts using a spatial filtering technique.For each scale increment,the optimal relaxation time in the IAU scheme was determined by the skill of the forecasting results.Finally,different scales of analysis increments were added to the model integration during their optimal relaxation time.The multi-scale IAU scheme can effectively reduce the noise and further improve the balance between large-scale and small-scale increments in the model initialization stage.To evaluate its performance,several numerical experiments were conducted to simulate the path and intensity of Typhoon Mangkhut(2018)and showed that:(1)the multi-scale IAU scheme had an obvious effect on noise control at the initial stage of data assimilation;(2)the optimal relaxation time for large-scale and small-scale increments was estimated as 6 h and 3 h,respectively;(3)the forecast performance of the multi-scale IAU scheme in the prediction of Typhoon Mangkhut(2018)was better than that of the traditional IAU scheme.The results demonstrate the superiority of the multi-scale IAU scheme.展开更多
Securing medical data while transmission on the network is required because it is sensitive and life-dependent data.Many methods are used for protection,such as Steganography,Digital Signature,Cryptography,and Waterma...Securing medical data while transmission on the network is required because it is sensitive and life-dependent data.Many methods are used for protection,such as Steganography,Digital Signature,Cryptography,and Watermarking.This paper introduces a novel robust algorithm that combines discrete wavelet transform(DWT),discrete cosine transform(DCT),and singular value decomposition(SVD)digital image-watermarking algorithms.The host image is decomposed using a two-dimensional DWT(2D-DWT)to approximate low-frequency sub-bands in the embedding process.Then the sub-band low-high(LH)is decomposed using 2D-DWT to four new sub-bands.The resulting sub-band low-high(LH1)is decomposed using 2D-DWT to four new sub-bands.Two frequency bands,high-high(HH_(2))and high-low(HL_(2)),are transformed by DCT,and then the SVD is applied to the DCT coefficients.The strongest modified singular values(SVs)vary very little for most attacks,which is an important property of SVD watermarking.The two watermark images are encrypted using two layers of encryption,circular and chaotic encryption techniques,to increase security.The first encrypted watermark is embedded in the S component of the DCT components of the HL_(2)coefficients.The second encrypted watermark is embedded in the S component of the DCT components of the HH2 coefficients.The suggested technique has been tested against various attacks and proven to provide excellent stability and imperceptibility results.展开更多
Underwater imagery and transmission possess numerous challenges like lower signal bandwidth,slower data transmission bit rates,Noise,underwater blue/green light haze etc.These factors distort the estimation of Region ...Underwater imagery and transmission possess numerous challenges like lower signal bandwidth,slower data transmission bit rates,Noise,underwater blue/green light haze etc.These factors distort the estimation of Region of Interest and are prime hurdles in deploying efficient compression techniques.Due to the presence of blue/green light in underwater imagery,shape adaptive or block-wise compression techniques faces failures as it becomes very difficult to estimate the compression levels/coefficients for a particular region.This method is proposed to efficiently deploy an Extreme Learning Machine(ELM)model-based shape adaptive Discrete Cosine Transformation(DCT)for underwater images.Underwater color image restoration techniques based on veiling light estimation and restoration of images followed by Saliency map estimation based on Gray Level Cooccurrence Matrix(GLCM)features are explained.An ELM network is modeled which takes two parameters,signal strength and saliency value of the region to be compressed and level of compression(DCT coefficients and compression steps)are predicted by ELM.This method ensures lesser errors in the Region of Interest and a better trade-off between available signal strength and compression level.展开更多
ions in the ECG signal.The cardiologist and medical specialistfind numerous difficulties in the process of traditional approaches.The specified restrictions are eliminated in the proposed classifier.The fundamental ai...ions in the ECG signal.The cardiologist and medical specialistfind numerous difficulties in the process of traditional approaches.The specified restrictions are eliminated in the proposed classifier.The fundamental aim of this work is tofind the R-R interval.To analyze the blockage,different approaches are implemented,which make the computation as facile with high accuracy.The information are recovered from the MIT-BIH dataset.The retrieved data contain normal and pathological ECG signals.To obtain a noiseless signal,Gaborfilter is employed and to compute the amplitude of the signal,DCT-DOST(Discrete cosine based Discrete orthogonal stock well transform)is implemented.The amplitude is computed to detect the cardiac abnormality.The R peak of the underlying ECG signal is noted and the segment length of the ECG cycle is identified.The Genetic algorithm(GA)retrieves the primary highlights and the classifier integrates the data with the chosen attributes to optimize the identification.In addition,the GA helps in performing hereditary calculations to reduce the problem of multi-target enhancement.Finally,the RBFNN(Radial basis function neural network)is applied,which diminishes the local minima present in the signal.It shows enhancement in characterizing the ordinary and anomalous ECG signals.展开更多
Ground roll is an interference wave that severely degrades the signal-to-noise ratio of seismic data and affects its subsequent processing and interpretation.In this study,according to differences in morphological cha...Ground roll is an interference wave that severely degrades the signal-to-noise ratio of seismic data and affects its subsequent processing and interpretation.In this study,according to differences in morphological characteristics between ground roll and reflected waves,we use morphological component analysis based on two-dimensional dictionaries to separate ground roll and reflected waves.Because ground roll is characterized by lowfrequency,low-velocity,and dispersion,we select two-dimensional undecimated discrete wavelet transform as a sparse representation dictionary of ground roll.Because of a strong local correlation of the reflected wave,we select two-dimensional local discrete cosine transform as the sparse representation dictionary of reflected waves.A sparse representation model of seismic data is constructed based on a two-dimensional joint dictionary then a block coordinate relaxation algorithm is used to solve the model and decompose seismic record into reflected wave part and ground roll part.The good effects for the synthetic seismic data and application of real seismic data indicate that when using the model,strong-energy ground roll is considerably suppressed and the waveform of the reflected wave is effectively protected.展开更多
A method which extracts traffic information from an MPEG-2 compressed video is proposed. According to the features of vehicle motion, the motion vector of a macro-block is used to detect moving vehicles in daytime, an...A method which extracts traffic information from an MPEG-2 compressed video is proposed. According to the features of vehicle motion, the motion vector of a macro-block is used to detect moving vehicles in daytime, and a filter algorithm for removing noises of motion vectors is given. As the brightness of the headlights is higher than that of the background in night images, discrete cosine transform (DCT)coefficient of image block is used to detect headlights of vehicles at night, and an algorithm for calculating the DCT coefficients of P-frames is introduced. In order to prevent moving objects outside the expressway and video shot changes from disturbing the detection, a driveway location method and a video-shot-change detection algorithm are suggested. The detection rate is 97.4% in daytime and 95.4% in nighttime by this method. The results prove that this vehicle detection method is effective.展开更多
[Objective] The aim was to present a proposal about a new image compression technology, in order to make the image be able to be stored in a smaller space and be transmitted with smaller bit rate on the premise of gua...[Objective] The aim was to present a proposal about a new image compression technology, in order to make the image be able to be stored in a smaller space and be transmitted with smaller bit rate on the premise of guaranteeing image quality in the rape crop monitoring system in Qinling Mountains. [Method] In the proposal, the color image was divided into brightness images with three fundamental colors, followed by sub-image division and DCT treatment. Then, coefficients of transform domain were quantized, and encoded and compressed as per Huffman coding. Finally, decompression was conducted through inverse process and decompressed images were matched. [Result] The simulation results show that when compression ratio of the color image of rape crops was 11.972 3∶1, human can not distinguish the differences between the decompressed images and the source images with naked eyes; when ratio was as high as 53.565 6∶1, PSNR was still above 30 dD,encoding efficiency achieved over 0.78 and redundancy was less than 0.22. [Conclusion] The results indicate that the proposed color image compression technology can achieve higher compression ratio on the premise of good image quality. In addition, image encoding quality and decompressed images achieved better results, which fully met requirement of image storage and transmission in monitoring system of rape crop in the Qinling Mountains.展开更多
The transform base function method is one of the most commonly used techniques for seismic denoising, which achieves the purpose of removing noise by utilizing the sparseness and separateness of seismic data in the tr...The transform base function method is one of the most commonly used techniques for seismic denoising, which achieves the purpose of removing noise by utilizing the sparseness and separateness of seismic data in the transform base function domain. However, the effect is not satisfactory because it needs to pre-select a set of fixed transform-base functions and process the corresponding transform. In order to find a new approach, we introduce learning-type overcomplete dictionaries, i.e., optimally sparse data representation is achieved through learning and training driven by seismic modeling data, instead of using a single set of fixed transform bases. In this paper, we combine dictionary learning with total variation (TV) minimization to suppress pseudo-Gibbs artifacts and describe the effects of non-uniform dictionary sub-block scale on removing noises. Taking the discrete cosine transform and random noise as an example, we made comparisons between a single transform base, non-learning-type, overcomplete dictionary and a learning-type overcomplete dictionary and also compare the results with uniform and nonuniform size dictionary atoms. The results show that, when seismic data is represented sparsely using the learning-type overcomplete dictionary, noise is also removed and visibility and signal to noise ratio is markedly increased. We also compare the results with uniform and nonuniform size dictionary atoms, which demonstrate that a nonuniform dictionary atom is more suitable for seismic denoising.展开更多
For global navigation satellite system (GNSS) signals in Gaussian and Rayleigh fading channel, a novel signal detection algorithm is proposed. Under the low frequency uncertainty case, after performing discrete cosi...For global navigation satellite system (GNSS) signals in Gaussian and Rayleigh fading channel, a novel signal detection algorithm is proposed. Under the low frequency uncertainty case, after performing discrete cosine transform (DCT) to the outputs of the partial matched filter (PMF) for every antenna, the high order com- ponents in the transforming domain will be filtered, then the equalgain (EG) combination for the inverse discrete cosine transform (IDCT) reconstructed signal would be done subsequently. Thus, due to the different frequency distribution characteristics between the noise and signals, after EG combination, the energy of signals has almost no loss and the noise energy is greatly reduced. The theoretical analysis and simulation results show that the detection algorithm can effectively improve the signal-to-noise ratio of the captured signal and increase the probability of detection under the same false alarm probability. In addition, it should be pointed out that this method can also be applied to Rayleigh fading channels with moving antenna.展开更多
Invisible watermarking methods have been applied in frequency domains, trying to embed a small image inside a large original image. The original bitmap image will be converted into frequency domain to obtain the discr...Invisible watermarking methods have been applied in frequency domains, trying to embed a small image inside a large original image. The original bitmap image will be converted into frequency domain to obtain the discrete cosine transform (DCT) matrices from its blocks. The bits of the logo image are embedded in random color components of the original image, as well as in random positions in each selected block. These positions are alternating current (AC) coefficients of the DCT matrix. The randomness is obtained from RC4 pseudorandom bit generator that determines in which color component this logo image bits will be embedded. The embedded bits have been hidden in random blocks in the image, which are chosen according to a (semi-random) function proposed in this work.展开更多
文摘Aim To present an ASIC design of DA based 2 D IDCT. Methods\ In the design of 1 D IDCT is utilized a Chen based fast IDCT algorithm, and multiplier accumulators based on distributed algorithm contributes in reducing the hardware amount and in enhancing the speed performance. Results and Conclusion\ VHDL simulation, synthesis and layout design of system are implemented. This 2 D IDCT ASIC design owns best timing performance when compared with other better designs internationally. Results of design prove to be excellent.
基金supported by the Open Foundation of Jiangsu Engineering Center of Network Monitoring(Nanjing University of Information Science&Technology)(Grant No.KJR1509)the PAPD fundthe CICAEET fund
文摘Traditional watermark embedding schemes inevitably modify the data in a host audio signal and lead to the degradation of the host signal.In this paper,a novel audio zero-watermarking algorithm based on discrete wavelet transform(DWT),discrete cosine transform(DCT),and singular value decomposition(SVD) is presented.The watermark is registered by performing SVD on the coefficients generated through DWT and DCT to avoid data modification and host signal degradation.Simulation results show that the proposed zero-watermarking algorithm is strongly robust to common signal processing methods such as requantization,MP3 compression,resampling,addition of white Gaussian noise,and low-pass filtering.
文摘In doubly selective fading channels, the orthogonal frequency division multiplexing (OFDM) multicarrier system may fail. Chirp like basis (fractional Fourier transform-fractional cosine transform) may be used instead of complex exponential basis in this case to improve the system performance. However, in multicarrier transmission, the high peak to average power ratio (PAPR) of the transmitted signal is one of the difficult problems that face both the chirp and the exponential basis. In this paper, an evaluation for the PAPR performance of a multicarrier system based on the fractional cosine transform (FrCT) is introduced and then compared with DFrFT and FFT. Moreover, applying the SLAM technique over these systems is provided to understand the behaviour of these systems when applying SLAM. Simulations verify that this system obtains a better PAPR performance. Moreover, further PAPR reduction can be gained using the well-known PAPR reduction methods. Moreover, applying SLAM technique improves the performance of (dB) by 4 dB to 5 dB and all systems become as competitive to each other when SLAM is applied. Finally, BER performance comparison among OFDM, Discrete Cosine Transform MCM (DCT- MCM), Discrete Hartley Transform MCM (DHT-MCM), DFrFT-OCDM and DFrCT- OCDM MCM systems was done by means of simulation over 100,000 multicarrier blocks for each one and showed that our proposed scenario gave the best performance.
文摘Multiple image watermarking is an advanced concept of singular watermarking techniques. The existing singular digital image watermarking techniques cannot obtain all the design goals, such as imperceptibility, robustness, security, and capacity simultaneously with perfection. Hence, the multiple image watermarking technique is designed that embeds several watermarks into the same host image for conveying multiple information. This paper proposed a multiple image watermarking technique with Discrete Cosine Transform (DCT) for ensuring the low computational time for embedding, encryption, decryption as well as extraction of the watermark images. Here, DCT is used to ensure the visual quality of the host image, and a random binary matrix is used to improve the security of the digital image. We have given a basic framework for multiple image watermarking. Our experimental results show satisfactory performance.
基金Project supported by the National Natural Science Foundation of China(Grant No.6017201860372007)
文摘A novel time-frequency domain interference excision technique is proposed. The technique is based on adaptive biorthogonal local discrete cosine trans form (BLDCT). It uses a redundant library of biorthogonal local discrete cosine bases and an efficient concave cost function to match the transform basis to the interfering signal. The main advantage of the algorithm over conventional trans form domain excision algorithms is that the basis functions are not fixed but ca n be adapted to the time-frequency structure of the interfering signal. It is w e ll suited to transform domain compression and suppression of various types of in terference. Compared to the discrete wavelet transform (DWT) that provides logar ithmic division of the frequency bands, the adaptive BLDCT can provide more flex ible frequency resolution. Thus it is more insensitive to variations of jamming frequency. Simulation results demonstrate the improved bit error rate (BER) perf ormance and the increased robustness of the receiver.
文摘The Fourier transform is very important to numerous applications in science and engineering. However, its usefulness is hampered by its computational expense. In this paper, in an attempt to develop a faster method for computing Fourier transforms, the authors present parallel implementations of two new algorithms developed for the type IV Discrete Cosine Transform (DCT-IV) which support the new interleaved fast Fourier transform method. The authors discuss the realizations of their implementations using two paradigms. The first involved commodity equipment and the Message-Passing Interface (MPI) library. The second utilized the RapidMind development platform and the Cell Broadband Engine (BE) processor. These experiments indicate that the authors' rotation-based algorithm is preferable to their lifting-based algorithm on the platforms tested, with increased efficiency demonstrated by their MPI implementation for large data sets. Finally, the authors outline future work by discussing an architecture-oriented method for computing DCT-IVs which promises further optimization. The results indicate a promising fresh direction in the search for efficient ways to compute Fourier transforms.
文摘Discrete cosine transform (DCT) is frequently used in image and video signal processing due to its high energy compaction property. Humans are able to perceive and identify the information from slightly erroneous images. It is enough to produce approximate outputs rather than absolute outputs which in turn reduce the circuit complexity. Numbers of applications like image and video processing need higher dimensional DCT algorithms. So the existing architectures of one dimensional (1D) approximate DCTs are reviewed and extended to two dimensional (2D) approximate DCTs. Approximate 2D multiplier-free DCT architectures are coded in Verilog, simulated in Modelsim to evaluate the correctness, synthesized to evaluate the performance and implemented in virtexE Field Programmable Gate Array (FPGA) kit. A comparative analysis of approximate 2D DCT architectures is carried out in terms of speed and area.
文摘Steganography is a technique for hiding secret messages while sending and receiving communications through a cover item.From ancient times to the present,the security of secret or vital information has always been a significant problem.The development of secure communication methods that keep recipient-only data transmissions secret has always been an area of interest.Therefore,several approaches,including steganography,have been developed by researchers over time to enable safe data transit.In this review,we have discussed image steganography based on Discrete Cosine Transform(DCT)algorithm,etc.We have also discussed image steganography based on multiple hashing algorithms like the Rivest–Shamir–Adleman(RSA)method,the Blowfish technique,and the hash-least significant bit(LSB)approach.In this review,a novel method of hiding information in images has been developed with minimal variance in image bits,making our method secure and effective.A cryptography mechanism was also used in this strategy.Before encoding the data and embedding it into a carry image,this review verifies that it has been encrypted.Usually,embedded text in photos conveys crucial signals about the content.This review employs hash table encryption on the message before hiding it within the picture to provide a more secure method of data transport.If the message is ever intercepted by a third party,there are several ways to stop this operation.A second level of security process implementation involves encrypting and decrypting steganography images using different hashing algorithms.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62105004 and 52174141)the College Student Innovation and Entrepreneurship Fund Project(Grant No.202210361053)+1 种基金Anhui Mining Machinery and Electrical Equipment Coordination Innovation Center,Anhui University of Science&Technology(Grant No.KSJD202304)the Anhui Province Digital Agricultural Engineering Technology Research Center Open Project(Grant No.AHSZNYGC-ZXKF021)。
文摘A novel color image encryption scheme is developed to enhance the security of encryption without increasing the complexity. Firstly, the plain color image is decomposed into three grayscale plain images, which are converted into the frequency domain coefficient matrices(FDCM) with discrete cosine transform(DCT) operation. After that, a twodimensional(2D) coupled chaotic system is developed and used to generate one group of embedded matrices and another group of encryption matrices, respectively. The embedded matrices are integrated with the FDCM to fulfill the frequency domain encryption, and then the inverse DCT processing is implemented to recover the spatial domain signal. Eventually,under the function of the encryption matrices and the proposed diagonal scrambling algorithm, the final color ciphertext is obtained. The experimental results show that the proposed method can not only ensure efficient encryption but also satisfy various sizes of image encryption. Besides, it has better performance than other similar techniques in statistical feature analysis, such as key space, key sensitivity, anti-differential attack, information entropy, noise attack, etc.
基金supported in part by the National Natural Science Foundation of China under Grant 62006071part by the Science and Technology Research Project of Henan Province under Grant 232103810086.
文摘In recent years,there has been extensive research on object detection methods applied to optical remote sensing images utilizing convolutional neural networks.Despite these efforts,the detection of small objects in remote sensing remains a formidable challenge.The deep network structure will bring about the loss of object features,resulting in the loss of object features and the near elimination of some subtle features associated with small objects in deep layers.Additionally,the features of small objects are susceptible to interference from background features contained within the image,leading to a decline in detection accuracy.Moreover,the sensitivity of small objects to the bounding box perturbation further increases the detection difficulty.In this paper,we introduce a novel approach,Cross-Layer Fusion and Weighted Receptive Field-based YOLO(CAW-YOLO),specifically designed for small object detection in remote sensing.To address feature loss in deep layers,we have devised a cross-layer attention fusion module.Background noise is effectively filtered through the incorporation of Bi-Level Routing Attention(BRA).To enhance the model’s capacity to perceive multi-scale objects,particularly small-scale objects,we introduce a weightedmulti-receptive field atrous spatial pyramid poolingmodule.Furthermore,wemitigate the sensitivity arising from bounding box perturbation by incorporating the joint Normalized Wasserstein Distance(NWD)and Efficient Intersection over Union(EIoU)losses.The efficacy of the proposedmodel in detecting small objects in remote sensing has been validated through experiments conducted on three publicly available datasets.The experimental results unequivocally demonstrate the model’s pronounced advantages in small object detection for remote sensing,surpassing the performance of current mainstream models.
基金jointly sponsored by the Shenzhen Science and Technology Innovation Commission (Grant No. KCXFZ20201221173610028)the key program of the National Natural Science Foundation of China (Grant No. 42130605)
文摘In the traditional incremental analysis update(IAU)process,all analysis increments are treated as constant forcing in a model’s prognostic equations over a certain time window.This approach effectively reduces high-frequency oscillations introduced by data assimilation.However,as different scales of increments have unique evolutionary speeds and life histories in a numerical model,the traditional IAU scheme cannot fully meet the requirements of short-term forecasting for the damping of high-frequency noise and may even cause systematic drifts.Therefore,a multi-scale IAU scheme is proposed in this paper.Analysis increments were divided into different scale parts using a spatial filtering technique.For each scale increment,the optimal relaxation time in the IAU scheme was determined by the skill of the forecasting results.Finally,different scales of analysis increments were added to the model integration during their optimal relaxation time.The multi-scale IAU scheme can effectively reduce the noise and further improve the balance between large-scale and small-scale increments in the model initialization stage.To evaluate its performance,several numerical experiments were conducted to simulate the path and intensity of Typhoon Mangkhut(2018)and showed that:(1)the multi-scale IAU scheme had an obvious effect on noise control at the initial stage of data assimilation;(2)the optimal relaxation time for large-scale and small-scale increments was estimated as 6 h and 3 h,respectively;(3)the forecast performance of the multi-scale IAU scheme in the prediction of Typhoon Mangkhut(2018)was better than that of the traditional IAU scheme.The results demonstrate the superiority of the multi-scale IAU scheme.
基金This work was supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R308)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Securing medical data while transmission on the network is required because it is sensitive and life-dependent data.Many methods are used for protection,such as Steganography,Digital Signature,Cryptography,and Watermarking.This paper introduces a novel robust algorithm that combines discrete wavelet transform(DWT),discrete cosine transform(DCT),and singular value decomposition(SVD)digital image-watermarking algorithms.The host image is decomposed using a two-dimensional DWT(2D-DWT)to approximate low-frequency sub-bands in the embedding process.Then the sub-band low-high(LH)is decomposed using 2D-DWT to four new sub-bands.The resulting sub-band low-high(LH1)is decomposed using 2D-DWT to four new sub-bands.Two frequency bands,high-high(HH_(2))and high-low(HL_(2)),are transformed by DCT,and then the SVD is applied to the DCT coefficients.The strongest modified singular values(SVs)vary very little for most attacks,which is an important property of SVD watermarking.The two watermark images are encrypted using two layers of encryption,circular and chaotic encryption techniques,to increase security.The first encrypted watermark is embedded in the S component of the DCT components of the HL_(2)coefficients.The second encrypted watermark is embedded in the S component of the DCT components of the HH2 coefficients.The suggested technique has been tested against various attacks and proven to provide excellent stability and imperceptibility results.
文摘Underwater imagery and transmission possess numerous challenges like lower signal bandwidth,slower data transmission bit rates,Noise,underwater blue/green light haze etc.These factors distort the estimation of Region of Interest and are prime hurdles in deploying efficient compression techniques.Due to the presence of blue/green light in underwater imagery,shape adaptive or block-wise compression techniques faces failures as it becomes very difficult to estimate the compression levels/coefficients for a particular region.This method is proposed to efficiently deploy an Extreme Learning Machine(ELM)model-based shape adaptive Discrete Cosine Transformation(DCT)for underwater images.Underwater color image restoration techniques based on veiling light estimation and restoration of images followed by Saliency map estimation based on Gray Level Cooccurrence Matrix(GLCM)features are explained.An ELM network is modeled which takes two parameters,signal strength and saliency value of the region to be compressed and level of compression(DCT coefficients and compression steps)are predicted by ELM.This method ensures lesser errors in the Region of Interest and a better trade-off between available signal strength and compression level.
文摘ions in the ECG signal.The cardiologist and medical specialistfind numerous difficulties in the process of traditional approaches.The specified restrictions are eliminated in the proposed classifier.The fundamental aim of this work is tofind the R-R interval.To analyze the blockage,different approaches are implemented,which make the computation as facile with high accuracy.The information are recovered from the MIT-BIH dataset.The retrieved data contain normal and pathological ECG signals.To obtain a noiseless signal,Gaborfilter is employed and to compute the amplitude of the signal,DCT-DOST(Discrete cosine based Discrete orthogonal stock well transform)is implemented.The amplitude is computed to detect the cardiac abnormality.The R peak of the underlying ECG signal is noted and the segment length of the ECG cycle is identified.The Genetic algorithm(GA)retrieves the primary highlights and the classifier integrates the data with the chosen attributes to optimize the identification.In addition,the GA helps in performing hereditary calculations to reduce the problem of multi-target enhancement.Finally,the RBFNN(Radial basis function neural network)is applied,which diminishes the local minima present in the signal.It shows enhancement in characterizing the ordinary and anomalous ECG signals.
基金supported by the National Scientific Equipment Development Project,"Deep Resource Exploration Core Equipment Research and Development"(Grant No.ZDYZ2012-1)06 Subproject,"Metal Mine Earthquake Detection System"and 05 Subject,"System Integration Field Test and Processing Software Development"
文摘Ground roll is an interference wave that severely degrades the signal-to-noise ratio of seismic data and affects its subsequent processing and interpretation.In this study,according to differences in morphological characteristics between ground roll and reflected waves,we use morphological component analysis based on two-dimensional dictionaries to separate ground roll and reflected waves.Because ground roll is characterized by lowfrequency,low-velocity,and dispersion,we select two-dimensional undecimated discrete wavelet transform as a sparse representation dictionary of ground roll.Because of a strong local correlation of the reflected wave,we select two-dimensional local discrete cosine transform as the sparse representation dictionary of reflected waves.A sparse representation model of seismic data is constructed based on a two-dimensional joint dictionary then a block coordinate relaxation algorithm is used to solve the model and decompose seismic record into reflected wave part and ground roll part.The good effects for the synthetic seismic data and application of real seismic data indicate that when using the model,strong-energy ground roll is considerably suppressed and the waveform of the reflected wave is effectively protected.
基金The Cultivation Fund of the Key Scientific and Technical Innovation Project of Higher Education of Ministry of Education(No.705020)the Natural Science Foundation of Jiangsu Province ( No.BK2004077)
文摘A method which extracts traffic information from an MPEG-2 compressed video is proposed. According to the features of vehicle motion, the motion vector of a macro-block is used to detect moving vehicles in daytime, and a filter algorithm for removing noises of motion vectors is given. As the brightness of the headlights is higher than that of the background in night images, discrete cosine transform (DCT)coefficient of image block is used to detect headlights of vehicles at night, and an algorithm for calculating the DCT coefficients of P-frames is introduced. In order to prevent moving objects outside the expressway and video shot changes from disturbing the detection, a driveway location method and a video-shot-change detection algorithm are suggested. The detection rate is 97.4% in daytime and 95.4% in nighttime by this method. The results prove that this vehicle detection method is effective.
基金Supported by Special Fund for Scientific Research of Shannxi Education Department(No:2010JK463)Shaanxi Natural Science Foundation(2011JE012)~~
文摘[Objective] The aim was to present a proposal about a new image compression technology, in order to make the image be able to be stored in a smaller space and be transmitted with smaller bit rate on the premise of guaranteeing image quality in the rape crop monitoring system in Qinling Mountains. [Method] In the proposal, the color image was divided into brightness images with three fundamental colors, followed by sub-image division and DCT treatment. Then, coefficients of transform domain were quantized, and encoded and compressed as per Huffman coding. Finally, decompression was conducted through inverse process and decompressed images were matched. [Result] The simulation results show that when compression ratio of the color image of rape crops was 11.972 3∶1, human can not distinguish the differences between the decompressed images and the source images with naked eyes; when ratio was as high as 53.565 6∶1, PSNR was still above 30 dD,encoding efficiency achieved over 0.78 and redundancy was less than 0.22. [Conclusion] The results indicate that the proposed color image compression technology can achieve higher compression ratio on the premise of good image quality. In addition, image encoding quality and decompressed images achieved better results, which fully met requirement of image storage and transmission in monitoring system of rape crop in the Qinling Mountains.
基金supported by The National 973 program (No. 2007 CB209505)Basic Research Project of PetroChina's 12th Five Year Plan (No. 2011A-3601)RIPED Youth Innovation Foundation (No. 2010-A-26-01)
文摘The transform base function method is one of the most commonly used techniques for seismic denoising, which achieves the purpose of removing noise by utilizing the sparseness and separateness of seismic data in the transform base function domain. However, the effect is not satisfactory because it needs to pre-select a set of fixed transform-base functions and process the corresponding transform. In order to find a new approach, we introduce learning-type overcomplete dictionaries, i.e., optimally sparse data representation is achieved through learning and training driven by seismic modeling data, instead of using a single set of fixed transform bases. In this paper, we combine dictionary learning with total variation (TV) minimization to suppress pseudo-Gibbs artifacts and describe the effects of non-uniform dictionary sub-block scale on removing noises. Taking the discrete cosine transform and random noise as an example, we made comparisons between a single transform base, non-learning-type, overcomplete dictionary and a learning-type overcomplete dictionary and also compare the results with uniform and nonuniform size dictionary atoms. The results show that, when seismic data is represented sparsely using the learning-type overcomplete dictionary, noise is also removed and visibility and signal to noise ratio is markedly increased. We also compare the results with uniform and nonuniform size dictionary atoms, which demonstrate that a nonuniform dictionary atom is more suitable for seismic denoising.
基金supported by the National Natural Science Foundation of China(61172138)the Natural Science Basic Research Plan in Shaanxi Province of China(2013JQ8040)+1 种基金the Fundamental Research Funds for the Central Universities(K5051302015K5051302040)
文摘For global navigation satellite system (GNSS) signals in Gaussian and Rayleigh fading channel, a novel signal detection algorithm is proposed. Under the low frequency uncertainty case, after performing discrete cosine transform (DCT) to the outputs of the partial matched filter (PMF) for every antenna, the high order com- ponents in the transforming domain will be filtered, then the equalgain (EG) combination for the inverse discrete cosine transform (IDCT) reconstructed signal would be done subsequently. Thus, due to the different frequency distribution characteristics between the noise and signals, after EG combination, the energy of signals has almost no loss and the noise energy is greatly reduced. The theoretical analysis and simulation results show that the detection algorithm can effectively improve the signal-to-noise ratio of the captured signal and increase the probability of detection under the same false alarm probability. In addition, it should be pointed out that this method can also be applied to Rayleigh fading channels with moving antenna.
基金supported by the Deanship of Research and Graduate Studies at Applied Science University, Amman, Jordan
文摘Invisible watermarking methods have been applied in frequency domains, trying to embed a small image inside a large original image. The original bitmap image will be converted into frequency domain to obtain the discrete cosine transform (DCT) matrices from its blocks. The bits of the logo image are embedded in random color components of the original image, as well as in random positions in each selected block. These positions are alternating current (AC) coefficients of the DCT matrix. The randomness is obtained from RC4 pseudorandom bit generator that determines in which color component this logo image bits will be embedded. The embedded bits have been hidden in random blocks in the image, which are chosen according to a (semi-random) function proposed in this work.