期刊文献+
共找到117篇文章
< 1 2 6 >
每页显示 20 50 100
Hybrid Global Optimization Algorithm for Feature Selection 被引量:1
1
作者 Ahmad Taher Azar Zafar Iqbal Khan +1 位作者 Syed Umar Amin Khaled M.Fouad 《Computers, Materials & Continua》 SCIE EI 2023年第1期2021-2037,共17页
This paper proposes Parallelized Linear Time-Variant Acceleration Coefficients and Inertial Weight of Particle Swarm Optimization algorithm(PLTVACIW-PSO).Its designed has introduced the benefits of Parallel computing ... This paper proposes Parallelized Linear Time-Variant Acceleration Coefficients and Inertial Weight of Particle Swarm Optimization algorithm(PLTVACIW-PSO).Its designed has introduced the benefits of Parallel computing into the combined power of TVAC(Time-Variant Acceleration Coefficients)and IW(Inertial Weight).Proposed algorithm has been tested against linear,non-linear,traditional,andmultiswarmbased optimization algorithms.An experimental study is performed in two stages to assess the proposed PLTVACIW-PSO.Phase I uses 12 recognized Standard Benchmarks methods to evaluate the comparative performance of the proposed PLTVACIWPSO vs.IW based Particle Swarm Optimization(PSO)algorithms,TVAC based PSO algorithms,traditional PSO,Genetic algorithms(GA),Differential evolution(DE),and,finally,Flower Pollination(FP)algorithms.In phase II,the proposed PLTVACIW-PSO uses the same 12 known Benchmark functions to test its performance against the BAT(BA)and Multi-Swarm BAT algorithms.In phase III,the proposed PLTVACIW-PSO is employed to augment the feature selection problem formedical datasets.This experimental study shows that the planned PLTVACIW-PSO outpaces the performances of other comparable algorithms.Outcomes from the experiments shows that the PLTVACIW-PSO is capable of outlining a feature subset that is capable of enhancing the classification efficiency and gives the minimal subset of the core features. 展开更多
关键词 particle swarm optimization(pso) time-variant acceleration coefficients(TVAC) genetic algorithms differential evolution feature selection medical data
下载PDF
基于PSO-BP模型的差速器装配密封质量预测
2
作者 徐静 杨德岭 《森林工程》 北大核心 2024年第5期134-144,共11页
为了对林业运材车差速器总成装配密封质量进行事前预测,提高其产品质量及装配合格率,提出一种灰色关联分析算法结合粒子群(PSO)优化BP神经网络的预测模型。将由灰色关联分析算法筛选出影响差速器总成密封质量的关键装配工艺参数作为输... 为了对林业运材车差速器总成装配密封质量进行事前预测,提高其产品质量及装配合格率,提出一种灰色关联分析算法结合粒子群(PSO)优化BP神经网络的预测模型。将由灰色关联分析算法筛选出影响差速器总成密封质量的关键装配工艺参数作为输入变量,差速器总成泄漏值作为输出变量,创建基于粒子群(PSO)算法优化BP神经网络(PSO-BP)的预测模型,结果表明,由灰色关联分析简化后的PSO-BP预测方法得到的平均相对误差最小为1.18%。在此基础上,应用PyQt5 GUI库开发差速器总成泄漏值预测系统。研究结果可以为差速器总成密封质量预测提供理论依据。 展开更多
关键词 运材车辆 差速器 密封质量 灰色关联分析算法 粒子群优化算法 反向传播神经网络
下载PDF
Hybrid Particle Swarm Optimization with Differential Evolution for Numerical and Engineering Optimization 被引量:3
3
作者 Guo-Han Lin Jing Zhang Zhao-Hua Liu 《International Journal of Automation and computing》 EI CSCD 2018年第1期103-114,共12页
In this paper, a hybrid particle swarm optimization (PSO) algorithm with differential evolution (DE) is proposed for numerical benchmark problems and optimization of active disturbance rejection controller (ADRC... In this paper, a hybrid particle swarm optimization (PSO) algorithm with differential evolution (DE) is proposed for numerical benchmark problems and optimization of active disturbance rejection controller (ADRC) parameters. A chaotic map with greater Lyapunov exponent is introduced into PSO for balancing the exploration and exploitation abilities of the proposed algorithm. A DE operator is used to help PSO jump out of stagnation. Twelve benchmark function tests from CEC2005 and eight real world opti- mization problems from CEC2011 are used to evaluate the performance of the proposed algorithm. The results show that statistically, the proposed hybrid algorithm has performed consistently well compared to other hybrid variants. Moreover, the simulation results on ADRC parameter optimization show that the optimized ADRC has better robustness and adaptability for nonlinear discrete-time systems with time delays. 展开更多
关键词 particle swarm optimization (pso active disturbance rejection control (ADRC) differential evolution algorithm chaoticmap parameter tuning.
原文传递
Discretization Algorithm Based on Particle Swarm Optimization and Its Application in Attributes Reduction for Fault Data 被引量:1
4
作者 ZHENG Bo LI Yanfeng FU Guozhong 《Journal of Shanghai Jiaotong university(Science)》 EI 2018年第5期691-695,共5页
In order to increase the fault diagnosis efficiency and make the fault data mining be realized, the decision table containing numerical attributes must be discretized for further calculations. The discernibility matri... In order to increase the fault diagnosis efficiency and make the fault data mining be realized, the decision table containing numerical attributes must be discretized for further calculations. The discernibility matrix-based reduction method depends on whether the numerical attributes can be properly discretized or not.So a discretization algorithm based on particle swarm optimization(PSO) is proposed. Moreover, hybrid weights are adopted in the process of particles evolution. Comparative calculations for certain equipment are completed to demonstrate the effectiveness of the proposed algorithm. The results indicate that the proposed algorithm has better performance than other popular algorithms such as class-attribute interdependence maximization(CAIM)discretization method and entropy-based discretization method. 展开更多
关键词 attributes discretization fault data reduction discernibility matrix particle swarm optimization(pso) hybrid weight
原文传递
Performance Evaluation and Comparison of Multi - Objective Optimization Algorithms for the Analytical Design of Switched Reluctance Machines
5
作者 Shen Zhang Sufei Li +1 位作者 Ronald G.Harley Thomas G.Habetler 《CES Transactions on Electrical Machines and Systems》 2017年第1期58-65,共8页
This paper systematically evaluates and compares three well-engineered and popular multi-objective optimization algorithms for the design of switched reluctance machines.The multi-physics and multi-objective nature of... This paper systematically evaluates and compares three well-engineered and popular multi-objective optimization algorithms for the design of switched reluctance machines.The multi-physics and multi-objective nature of electric machine design problems are discussed,followed by benchmark studies comparing generic algorithms(GA),differential evolution(DE)algorithms and particle swarm optimizations(PSO)on a 6/4 switched reluctance machine design with seven independent variables and a strong nonlinear multi-objective Pareto front.To better quantify the quality of the Pareto fronts,five primary quality indicators are employed to serve as the algorithm testing metrics.The results show that the three algorithms have similar performances when the optimization employs only a small number of candidate designs or ultimately,a significant amount of candidate designs.However,DE tends to perform better in terms of convergence speed and the quality of Pareto front when a relatively modest amount of candidates are considered. 展开更多
关键词 Design methodology differential evolution(DE) generic algorithm(GA) multi-objective optimization algorithms particle swarm optimization(pso) switched reluctance machines
下载PDF
基于改进PSO和DE的混合算法 被引量:18
6
作者 易文周 张超英 +2 位作者 王强 许亚梅 周金玲 《计算机工程》 CAS CSCD 北大核心 2010年第10期233-235,共3页
研究粒子群优化(PSO)算法和差分进化(DE)算法的优缺点,通过改进PSO算法并与DE算法混合,得到一种双种群的新型混合全局优化算法。经过对5个标准测试函数的大量实验计算表明,该算法能有效克服PSO算法和DE算法的缺陷,使寻优精度有较大改进... 研究粒子群优化(PSO)算法和差分进化(DE)算法的优缺点,通过改进PSO算法并与DE算法混合,得到一种双种群的新型混合全局优化算法。经过对5个标准测试函数的大量实验计算表明,该算法能有效克服PSO算法和DE算法的缺陷,使寻优精度有较大改进,在高维情况下表现更加突出。 展开更多
关键词 粒子群优化算法 差分进化算法 混合算法
下载PDF
改进的PSO混合算法 被引量:8
7
作者 杨恢先 刘子文 +2 位作者 汪俊 王绪四 谢鹏鹤 《计算机应用》 CSCD 北大核心 2010年第6期1516-1518,共3页
为了提高粒子群算法的寻优速度和寻优精度,提出一种改进的PSO混合算法。在差分进化(DE)算法中引入了动态比例因子,在PSO算法中引入DE算法的变异、交叉操作,重新构造PSO算法的粒子位置更新公式。选取了4个基准函数进行测试,并与其他PSO... 为了提高粒子群算法的寻优速度和寻优精度,提出一种改进的PSO混合算法。在差分进化(DE)算法中引入了动态比例因子,在PSO算法中引入DE算法的变异、交叉操作,重新构造PSO算法的粒子位置更新公式。选取了4个基准函数进行测试,并与其他PSO混合算法作了比较。仿真结果表明该方法是有效的。 展开更多
关键词 粒子群算法 差分进化算法 变异 交叉
下载PDF
基于PSO自整定PID控制器的柔性臂振动控制 被引量:12
8
作者 曹青松 洪芸芸 +1 位作者 周继惠 王辉 《振动.测试与诊断》 EI CSCD 北大核心 2014年第6期1045-1049,1168,共5页
针对压电柔性机械臂运行过程中的弹性振动问题,提出了基于粒子群优化算法(particle swarm optimization,简称PSO)自整定比例积分微分(proportional integral differential,简称PID)控制器参数的柔性臂振动抑制方法。采用标准粒子群优化... 针对压电柔性机械臂运行过程中的弹性振动问题,提出了基于粒子群优化算法(particle swarm optimization,简称PSO)自整定比例积分微分(proportional integral differential,简称PID)控制器参数的柔性臂振动抑制方法。采用标准粒子群优化算法,以时间乘绝对误差积(integrated time and absolute error,简称ITAE)准则为适应度函数,整定PID控制器的3个控制参数Kp,Ki和Kd,并采用Matlab Simulink平台建立双连杆压电柔性机械臂振动控制仿真模型,研制基于虚拟仪器技术的柔性臂振动控制试验系统。仿真与试验结果表明,采用常规PID控制算法和基于PSO自整定的PID控制算法均能有效地抑制柔性机械臂的弹性振动,但后者的振动抑制效果、鲁棒性与稳定性优于前者。 展开更多
关键词 柔性臂 振动控制 参数自整定 粒子群优化算法 比例积分微分控制器 压电元件
下载PDF
云环境下基于DPSO的任务调度算法 被引量:11
9
作者 邬开俊 鲁怀伟 《计算机工程》 CAS CSCD 2014年第1期59-62,共4页
针对云计算任务调度问题,结合粒子群优化(PSO)算法的种群个体协作和信息共享特点,提出一种基于离散粒子群优化(DPSO)的任务调度算法。采用随机方法生成初始种群,利用时变方式调整惯性权重,并在位置更新中使用绝对值取整求余映射法进行... 针对云计算任务调度问题,结合粒子群优化(PSO)算法的种群个体协作和信息共享特点,提出一种基于离散粒子群优化(DPSO)的任务调度算法。采用随机方法生成初始种群,利用时变方式调整惯性权重,并在位置更新中使用绝对值取整求余映射法进行合法化处理,提高PSO算法的离散化程度。搭建并重新编译了CloudSim云计算仿真平台进行实验,结果显示,当迭代次数为200时,DPSO、PSO、GA算法的所有任务最终调度时间分别为457.69 s、467.90 s、472.41 s,从而证明DPSO算法能够有效解决云计算环境下的任务调度问题,并且算法收敛速度优于PSO和GA算法。 展开更多
关键词 云计算 粒子群优化 离散 任务调度 惯性权重
下载PDF
基于PSO和朴素贝叶斯的软件缺陷预测模型 被引量:6
10
作者 葛贺贺 金聪 叶俊民 《计算机工程》 CAS CSCD 北大核心 2011年第12期36-37,共2页
为了设计高效的软件缺陷预测模型,提出一种将粒子群优化算法与朴素贝叶斯(NB)相结合的方法。该方法对历史数据进行离散化后,以NB分类的错误率作为粒子适应值函数,构建软件缺陷预测模型。通过对美国国家航天局软件工程项目的JM1数据进行... 为了设计高效的软件缺陷预测模型,提出一种将粒子群优化算法与朴素贝叶斯(NB)相结合的方法。该方法对历史数据进行离散化后,以NB分类的错误率作为粒子适应值函数,构建软件缺陷预测模型。通过对美国国家航天局软件工程项目的JM1数据进行仿真实验,证明该模型在预测性能方面优于同类方法,预测效果良好。 展开更多
关键词 软件缺陷 预测模型 粒子群优化 朴素贝叶斯 数据离散化
下载PDF
改进PSO优化神经网络算法的人体姿态识别 被引量:10
11
作者 何佳佳 李平 +1 位作者 刘井平 戴傲 《传感器与微系统》 CSCD 2017年第1期115-118,共4页
为了提高人体姿态的识别精度,提出一种基于改进的粒子群优化(PSO)神经网络的人体姿态识别算法。采用加速度传感器获取加速度信息,并在常用特征集的基础上,加入离散系数和曲线积分两种新特征作为神经网络的输入;在利用PSO神经网络参数的... 为了提高人体姿态的识别精度,提出一种基于改进的粒子群优化(PSO)神经网络的人体姿态识别算法。采用加速度传感器获取加速度信息,并在常用特征集的基础上,加入离散系数和曲线积分两种新特征作为神经网络的输入;在利用PSO神经网络参数的同时,通过控制概率,自适应地对粒子进行遗传操作,增强粒子跳出局部极小值的能力;采用训练后的神经网络对6种人体姿态进行识别。实验结果表明:该算法收敛速度和全局寻优能力得到了提高,与其他经典算法相比识别精度更高。 展开更多
关键词 人体姿态识别 粒子群优化算法 神经网络 离散系数 曲线积分
下载PDF
基于DE和PSO的混合智能算法及其在模糊EOQ模型中的应用 被引量:6
12
作者 曾宇容 王林 富庆亮 《计算机应用研究》 CSCD 北大核心 2012年第2期438-441,共4页
设计了融合差分进化和PSO算法优点的混合智能优化算法DEPSO,通过在粒子迭代过程中,随机选择一定数量的粒子进行差分进化操作,增加粒子的多样性,使陷入局部极小的粒子逃出,以保证DEPSO的全局收敛性能,并采用典型测试函数验证了DEPSO的性... 设计了融合差分进化和PSO算法优点的混合智能优化算法DEPSO,通过在粒子迭代过程中,随机选择一定数量的粒子进行差分进化操作,增加粒子的多样性,使陷入局部极小的粒子逃出,以保证DEPSO的全局收敛性能,并采用典型测试函数验证了DEPSO的性能。针对模糊相关机会规划EOQ模型求解难题,设计了基于模糊模拟方法和DEPSO的智能求解算法来计算模糊事件的可信性,从而得到了使库存费用不超过预算水平的可信度最大的最优订货量,算例证实了此求解算法的有效性。 展开更多
关键词 经济订货批量 相关机会规划 差分进化 粒子群优化 混合智能算法
下载PDF
PSO算法在油船双底结构优化设计中的应用研究 被引量:7
13
作者 秦洪德 石丽丽 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2010年第8期1007-1011,共5页
为了研究粒子群优化(PSO)算法用于解决大型复杂结构的优化设计问题的有效性,分别采用基本PSO算法、标准PSO算法与遗传算法(GA)对某一大型油船双层底结构优化设计问题进行了求解.优化过程中双层底结构的响应分析计算过程采用正交异性组... 为了研究粒子群优化(PSO)算法用于解决大型复杂结构的优化设计问题的有效性,分别采用基本PSO算法、标准PSO算法与遗传算法(GA)对某一大型油船双层底结构优化设计问题进行了求解.优化过程中双层底结构的响应分析计算过程采用正交异性组合板理论实现.将这3种优化算法的计算结果进行对比分析表明,与基本PSO算法和GA算法相比较,标准PSO算法的收敛速度最快,且能够获得该问题的全局最优解.研究结果表明,基本PSO算法可有效应用于解决如船体双层底等大型复杂结构优化设计问题. 展开更多
关键词 粒子群优化(pso) 离散变量 结构优化设计 双层底结构 正交异性板 收敛速度
下载PDF
改进PSO算法在雷达干扰任务分配中的应用 被引量:8
14
作者 李俊 郝成民 刘湘伟 《计算机仿真》 CSCD 2008年第12期27-30,共4页
雷达干扰任务分配是雷达对抗仿真的重要组成部分,雷达干扰任务分配是否合理直接影响电子对抗作战效能。由于常规优化算法相对复杂、计算时间较长,用来解决此问题难以满足实时仿真的要求。针对这一问题,提出适用于解决雷达干扰任务分配... 雷达干扰任务分配是雷达对抗仿真的重要组成部分,雷达干扰任务分配是否合理直接影响电子对抗作战效能。由于常规优化算法相对复杂、计算时间较长,用来解决此问题难以满足实时仿真的要求。针对这一问题,提出适用于解决雷达干扰任务分配优化问题的改进粒子群优化算法,并且将所提出的算法与遗传算法进行比较。仿真结果表明,与遗传算法相比,在相同的条件下,改进粒子群优化算法具有速度快、精度较高的优势,较好地满足了雷达对抗实时仿真的要求。 展开更多
关键词 粒子群优化算法 雷达干扰任务分配 离散优化问题
下载PDF
基于SAPSO优化灰色神经网络的空中目标威胁估计 被引量:26
15
作者 刘海波 王和平 沈立顶 《西北工业大学学报》 EI CAS CSCD 北大核心 2016年第1期25-32,共8页
针对目标威胁估计有很多不确定性的特点,分析了传统目标威胁估计方法和灰色神经网络初始参数随机选择的不足。采用模拟退火改进的粒子群算法代替梯度修正法,对网络参数初始值进行寻优,并通过该方法搜寻到的最优粒子,建立了基于模拟退火... 针对目标威胁估计有很多不确定性的特点,分析了传统目标威胁估计方法和灰色神经网络初始参数随机选择的不足。采用模拟退火改进的粒子群算法代替梯度修正法,对网络参数初始值进行寻优,并通过该方法搜寻到的最优粒子,建立了基于模拟退火粒子群算法优化的灰色神经网络模型,以提高预测模型的稳健性和精确度。与灰色神经网络和没有改进的粒子群灰色神经网络等方法进行比较,仿真实验结果表明,模拟退火粒子群优化的灰色神经网络具有很好的预测能力,可以准确地完成空中目标威胁估计。 展开更多
关键词 灰色系统 神经网络 模拟退火 粒子群算法 目标威胁估计
下载PDF
基于动态粒子群优化的X结构Steiner最小树算法
16
作者 王景熠 朱予涵 +1 位作者 周茹平 刘耿耿 《计算机工程》 CAS CSCD 北大核心 2024年第9期226-234,共9页
Steiner最小树(SMT)是总体布线的最佳连接模型,其构造是1个NP-难问题。粒子群优化(PSO)算法在解决NP-难问题中具有良好的表现,而PSO算法中种群的拓扑结构及搜索信息的传递机制对其性能有着很大的影响。1个适用于具体问题的种群拓扑结构... Steiner最小树(SMT)是总体布线的最佳连接模型,其构造是1个NP-难问题。粒子群优化(PSO)算法在解决NP-难问题中具有良好的表现,而PSO算法中种群的拓扑结构及搜索信息的传递机制对其性能有着很大的影响。1个适用于具体问题的种群拓扑结构对算法性能的提升极为显著。因此,利用PSO求解总体布线问题需要根据具体布线问题的特性来选择合适的粒子拓扑结构策略,以提升PSO的性能。提出基于动态PSO的X结构Steiner最小树(XSMT)算法以解决总体布线问题。首先,设计动态子群与信息交换策略,对种群进行子群划分,引入信息交换的概念,让子群在保持独立性的同时与其他子群进行信息交换,增加子群多样性;其次,设计粒子学习与变异策略,通过设置子群中粒子的学习对象使子群趋向于全局最优,并选择每个子群中适应度值最好的粒子进行变异,使粒子更易于跳出局部最优;最后,设计从多群局部学习过渡到单群全局学习策略,使算法在迭代次数到达阈值之后从局部学习过渡到全局学习,使得粒子在较优拓扑结构的基础上内部连接以获得更好的线长优化率。实验结果表明,与现有的2种R结构SMT(RSMT)算法相比,所提算法在优化线长方面分别优化了10.25%、8.24%;与现有的3种XSMT算法相比,该算法在优化线长方面分别优化了2.44%、1.46%、0.48%,验证了算法的有效性。 展开更多
关键词 动态粒子群优化 信息交换 X结构Steiner最小树 超大规模集成电路布线 粒子群优化离散化
下载PDF
基于定常线性迭代法的PSO算法收敛性分析 被引量:2
17
作者 张慧斌 王鸿斌 胡志军 《计算机工程与应用》 CSCD 北大核心 2011年第31期35-37,共3页
PSO算法本身是线性时变离散系统,现有的PSO算法收敛性条件的研究都是通过一定的假设将其转化为线性定常离散系统,线性定常离散系统的数学模型与求解线性方程组的单步定常线性迭代法的数学模型完全一致,这样对线性定常离散系统的稳定性... PSO算法本身是线性时变离散系统,现有的PSO算法收敛性条件的研究都是通过一定的假设将其转化为线性定常离散系统,线性定常离散系统的数学模型与求解线性方程组的单步定常线性迭代法的数学模型完全一致,这样对线性定常离散系统的稳定性分析就转化为对单步定常线性迭代格式的收敛性分析,为PSO算法的收敛性研究提供了一种新的思路和方法。 展开更多
关键词 pso算法 线性时变离散系统 线性定常离散系统 单步定常线性迭代格式 收敛性分析
下载PDF
基于改进的PSO算法解决雷达网布站优化问题 被引量:1
18
作者 李俊 郝成民 刘湘伟 《现代防御技术》 北大核心 2009年第5期118-122,共5页
雷达网布站优化是电子对抗仿真的重要组成部分,雷达网布站是否合理直接影响雷达网作战效能。而常规优化算法相对复杂,易陷于局部最优解。针对这一问题,提出适用于解决雷达网布站优化问题的改进粒子群优化算法,并且将所提出的算法与遗传... 雷达网布站优化是电子对抗仿真的重要组成部分,雷达网布站是否合理直接影响雷达网作战效能。而常规优化算法相对复杂,易陷于局部最优解。针对这一问题,提出适用于解决雷达网布站优化问题的改进粒子群优化算法,并且将所提出的算法与遗传算法进行了比较。仿真结果表明,与遗传算法相比,在相同的条件下,改进粒子群优化算法具有精度较高且不易陷入局部最优解的优点,较好地解决了静态条件下雷达网布站优化问题。 展开更多
关键词 粒子群优化算法 雷达干扰任务分配 离散优化问题
下载PDF
基于SVM和PSO的图像质量评价 被引量:2
19
作者 李翔 《计算机工程》 CAS CSCD 2012年第23期215-218,共4页
为提高白噪声、高斯模糊、JPEG2000压缩等失真类型图像的评价准确率,提出一种基于支持向量机和粒子群优化算法的图像质量评价方法。提取样本图像数据和确定评价指标,对样本数据进行预处理。利用粒子群优化算法选择最优参数,使用最优参... 为提高白噪声、高斯模糊、JPEG2000压缩等失真类型图像的评价准确率,提出一种基于支持向量机和粒子群优化算法的图像质量评价方法。提取样本图像数据和确定评价指标,对样本数据进行预处理。利用粒子群优化算法选择最优参数,使用最优参数对训练集数据进行训练,对预测集数据进行预测分析,并建立图像质量评价模型。实验结果表明,与线性回归模型、BP神经网络模型等传统方法相比,该方法的评价准确率较高,能够准确地反映人眼对图像的视觉感知。 展开更多
关键词 支持向量机 粒子群优化算法 图像质量评价 搜索算法 差异主观评价
下载PDF
基于PSO-DE-CA的FIR滤波器设计
20
作者 张旭珍 贾品贵 薛鹏骞 《计算机工程》 CAS CSCD 北大核心 2011年第23期183-185,共3页
为优化有限脉冲响应(FIR)数字滤波器的设计,提出一种基于双种群的文化算法。种群空间分别按照粒子群优化和差分进化算法独立进化。信仰空间作为知识库,用于保存求解问题的群体经验。仿真实验结果表明,在设计FIR数字滤波器时,该算法具有... 为优化有限脉冲响应(FIR)数字滤波器的设计,提出一种基于双种群的文化算法。种群空间分别按照粒子群优化和差分进化算法独立进化。信仰空间作为知识库,用于保存求解问题的群体经验。仿真实验结果表明,在设计FIR数字滤波器时,该算法具有较高的鲁棒性和较快的收敛速度,优化结果好于同类算法。 展开更多
关键词 文化算法 双种群 粒子群优化 差分进化 有限脉冲响应 数字滤波器
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部