期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
DEM simulation of particle flow on a single deck banana screen 被引量:13
1
作者 Liu Chusheng Wang Hong +2 位作者 Zhao Yuemin Zhao Lala Dong Hailin 《International Journal of Mining Science and Technology》 SCIE EI 2013年第2期277-281,共5页
A mathematical study of particle flow on a banana screen deck using the discrete element method (DEM) was presented in this paper. The motion characteristics and penetrating mechanisms of particles on the screen deck ... A mathematical study of particle flow on a banana screen deck using the discrete element method (DEM) was presented in this paper. The motion characteristics and penetrating mechanisms of particles on the screen deck were studied. Effects of geometric parameters of screen deck on banana screening process were also investigated. The results show that when the values of inclination of discharge and increment of screen deck inclination are 10° and 5° respectively, the banana screening process get a good screening performance in the simulation. The relationship between screen deck length and screening efficiency was further confirmed. The conclusion that the screening efficiency will not significantly increase when the deck length L≥430 mm (L/B ≥ 3.5) was obtained, which can provide theoretical basis for the optimization of banana screen. 展开更多
关键词 Banana screen particle flow discrete element method Numerical simulation
下载PDF
Numerical simulation of tetrahedral particle mixing and motion in rotating drums 被引量:7
2
作者 Nan Gui Xingtuan Yang +1 位作者 Jiyuan Tu Shengyao Jiang 《Particuology》 SCIE EI CAS CSCD 2018年第4期1-11,共11页
A regular tetrahedron is the simplest three-dimensional structure and has the largest non-sphericity. Mixing of tetrahedral particles in a thin drum mixer was studied by the soft-sphere-imbedded pseudo- hard particle ... A regular tetrahedron is the simplest three-dimensional structure and has the largest non-sphericity. Mixing of tetrahedral particles in a thin drum mixer was studied by the soft-sphere-imbedded pseudo- hard particle model and compared with that of spherical particles. The two particle types were simulated with different rotation speeds and drum filling levels. The Lacey mixing index and Shannon information entropy were used to explore the effects of sphericity on the mixing and motion of particles. Moreover, the probability density functions and mean values and variances of motion velocities, including translational and rotational, were computed to quantify the differences between the motion features of tetrahedra and spheres. We found that the flow regime depended on the particle shape in addition to the rotation speed and filling level of the drum. The mixing of tetrahedral particles was better than that of spherical particles in the rolling and cascading regimes at a high filling level, whereas it may be poorer when the filling level was low. The Shannon information entropy is better than the Lacey mixing index to evaluate mixing because it can reflect the real change of flow regime from the cataracting to the centrifugal regime, whereas the mixing index cannot. 展开更多
关键词 Tetrahedron Non-spherical particle Mixing Drum flow regime discrete element method
原文传递
Numerical simulation of submarine landslide tsunamis using particle based methods 被引量:4
3
作者 邱流潮 金峰 +2 位作者 林鹏智 刘毅 韩宇 《Journal of Hydrodynamics》 SCIE EI CSCD 2017年第4期542-551,共10页
This paper presents the simulation of tsunamis due to rigid and deformable landslides with consideration of submerged conditions by using particle methods. The smoothed particle hydrodynamics(SPH), as a particle bas... This paper presents the simulation of tsunamis due to rigid and deformable landslides with consideration of submerged conditions by using particle methods. The smoothed particle hydrodynamics(SPH), as a particle based method, is for solving problems of fast moving boundaries in the field of continuum mechanics. Other particle based methods, like the discrete element method(DEM), are suitable for modeling the displacement and the collision related to the rigid landslides. In the present work, we use the SPH and the DEM to simulate tsunamis generated by rigid and deformable landslides with consideration of submerged conditions. The viscous free-surface flows are solved by a weakly compressible SPH and the displacement and the rotation of the rigid body slides are calculated using a multi-sphere DEM allowing for modeling solids of arbitrarily complex shapes. The fluid-solid interactions are simulated by coupling the SPH and the DEM. A rheology model combining the Papanastasiou and the Herschel-Bulkley models is applied to represent the viscoplastic behavior of the non-Newtonian flow in the submarine deformable landslide cases. Submarine landslide tsunamis due to rigid and deformable landslides are both simulated as typical landslide cases in this investigation. Our simulated results and the previous experimental results in the literatures are in good agreement, which shows that the proposed particle based methods are capable of modeling the submarine landslide tsunamis. 展开更多
关键词 Landslide tsunamis fluid-solid interaction free-surface flows smoothed particle hydrodynamics discrete element method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部