Liquid phase exfoliation(LPE)process for graphene production is usually carried out in stirred tank reactor and the interactions between the solvent and the graphite particles are important as to improve the productio...Liquid phase exfoliation(LPE)process for graphene production is usually carried out in stirred tank reactor and the interactions between the solvent and the graphite particles are important as to improve the production efficiency.In this paper,these interactions were revealed by computational fluid dynamics–discrete element method(CFD-DEM)method.Based on simulation results,both liquid phase flow hydrodynamics and particle motion behavior have been analyzed,which gave the general information of the multiphase flow behavior inside the stirred tank reactor as to graphene production.By calculating the threshold at the beginning of graphite exfoliation process,the shear force from the slip velocity was determined as the active force.These results can support the optimization of the graphene production process.展开更多
A dense discrete phase model combined with the kinetic theory of granular flows was used to study the bubbling characteristics and segregation of poly-dispersed particle mixtures in a thin fluidized bed.Our simulation...A dense discrete phase model combined with the kinetic theory of granular flows was used to study the bubbling characteristics and segregation of poly-dispersed particle mixtures in a thin fluidized bed.Our simulations showed that in using the hybrid Eulerian-Lagrangian method,the common use of one computational cell in the thickness direction of the thin bed does not predict wall friction correctly.Instead,a three-cell discretization of the thickness direction does predict the wall friction well but six cells were needed to prevent overprediction of the bed expansion.The change in specularity factor(SF)of the model not only affected the predictions of the velocity of particles,but also had a considerable impact on their flow pattern.A decrease in SF,which decreases wall friction,showed an over-prediction in the size of bubbles,particle velocities,and void fraction of the bed,and led to a shift in the circulation center toward the bottom of the bed.The segregation of the Geldart B particles was studied in the narrow range from 400 to 600μm with a standard deviation less than 10%of the average diameter.Simulations showed that large particles accumulated close to the distributor at the bottom of the bed and the center of the bed,but small particles moved towards the wall and top surface.The decrease in the mean particle size and spread in shape of the distribution improves mixing by up to 30%at a superficial gas velocity of around 2.5 times the minimum fluidization velocity.Log-normal mixtures with a small proportion of large particles had the most uniform distribution with a thin layer of jetsam forming at the bottom of the bed.Finally,experimental verification of the segregation and mixing of polydisperse particles with narrow size distribution is suggested.展开更多
lronmaking using an oxygen blast furnace is an attractive approach for reducing energy consumption in the iron and steel industry. This paper presents a numerical study of gas-solid flow in an oxygen blast fur- nace b...lronmaking using an oxygen blast furnace is an attractive approach for reducing energy consumption in the iron and steel industry. This paper presents a numerical study of gas-solid flow in an oxygen blast fur- nace by coupling the discrete element method with computational fluid dynamics. The model reliability was verified by previous experimental results. The influences of particle diameter, shaft tuyere size, and specific ratio (X) of shaft-injected gas (51G) flowrate to total gas flowrate on the SIC penetration behavior and pressure field in the furnace were investigated. The results showed that gas penetration capacity in the furnace gradually decreased as the particle diameter decreased from 100 to 40 mm. Decreasing particle diameter and increasing shaft tuyere size both slightly increased the SIG concentration near the furnace wall but decreased it at the furnace center. The value of X has a significant impact on the SIG distribution. According to the pressure fields obtained under different conditions, the key factor affecting SIG penetration depth is the pressure difference between the upper and lower levels of the shaft tuyere. If the pressure difference is small, the SIG can easily penetrate to the furnace center.展开更多
As a first step towards the numerical analysis of the stochastic primitive equations of the atmosphere and the oceans, the time discretization of these equations by an implicit Euler scheme is studied. From the determ...As a first step towards the numerical analysis of the stochastic primitive equations of the atmosphere and the oceans, the time discretization of these equations by an implicit Euler scheme is studied. From the deterministic point of view, the 3D primitive equations are studied in their full form on a general domain and with physically realistic boundary conditions. From the probabilistic viewpoint, this paper deals with a wide class of nonlinear, state dependent, white noise forcings which may be interpreted in either the Itor the Stratonovich sense. The proof of convergence of the Euler scheme,which is carried out within an abstract framework, covers the equations for the oceans, the atmosphere, the coupled oceanic-atmospheric system as well as other related geophysical equations. The authors obtain the existence of solutions which are weak in both the PDE and probabilistic sense, a result which is new by itself to the best of our knowledge.展开更多
Research on recycling waste Printed Circuit Boards(PCB) is at the forefront of preventing environmental pollution and finding ways to recycle resources.The Tapered Column Separation Bed(TCSB) is invented aiming at dis...Research on recycling waste Printed Circuit Boards(PCB) is at the forefront of preventing environmental pollution and finding ways to recycle resources.The Tapered Column Separation Bed(TCSB) is invented aiming at disposing the problem that fine particles of waste printed circuit boards cannot be separated efficiently so as to obtain further insight about the underlying mechanisms and demonstrate the separation feasibility in the tapered column separation bed.In this work,a Computational Fluid Dynamics(CFD) coupled with Discrete Element Method(DEM) model for two-phase flow has been extended to simulate the fluid-solid flow in the tapered column separation bed.Its validity is demonstrated by its successful capturing the key features of particles' flow pattern,velocity,the pressure distribution,the axial position with time and axial force for particles with different densities.Simulation results show that the plastic particles and resin particles become overflow,while copper particles,iron particles and aluminum particles successively become underflow,with a discharge water flow rate of 1 m^3/h,an obliquity of 30°.The simulated results agree reasonably well with the experimental observation.Using this equipment to separate waste PCBs is feasible,theoretically.展开更多
【目的】为提高螺旋输送机的输送效率,降低输送机的功耗与磨损,探究在不同进料速率、螺旋轴转速与几何体摩擦系数下,超细碳酸钙在水平变径变距螺旋输送机内的颗粒流动状态、出口质量流量、输送机功耗与磨损分布。【方法】使用计算流体...【目的】为提高螺旋输送机的输送效率,降低输送机的功耗与磨损,探究在不同进料速率、螺旋轴转速与几何体摩擦系数下,超细碳酸钙在水平变径变距螺旋输送机内的颗粒流动状态、出口质量流量、输送机功耗与磨损分布。【方法】使用计算流体动力学(computational fluid dynamics,CFD)与离散单元法(discrete element method,DEM)双向耦合数值模拟的方法,对螺旋输送机在不同转速下的质量流率进行分析对比,验证数值模型的正确性。【结果】摩擦系数对颗粒的运动有较大影响,颗粒流的轴向速度峰值和质量流率峰值随着摩擦系数的增加先增大再减小;随着下料速度和摩擦系数的增大,输送机功率明显增大,且摩擦系数在高进料速度与低转速的情况下对功耗的影响相对于低进料速度和高转速更加明显;磨损较严重的区域集中在下料口处的螺旋轴与螺旋叶片的边缘处。【结论】简单增大或减小摩擦系数并不能提高颗粒的轴向速度和质量流量,而是存在一个局部最优参数组合;适当地提高转速能够减小颗粒密实度与颗粒停留时间,从而减小输送机的功耗与几何体磨损。展开更多
Control of rainfall-runoff particulate matter (PM) and PM-bound chemical loads is challenging; in part due to the wide gradation of PM complex geometries of many unit operations and variable flow rates. Such challen...Control of rainfall-runoff particulate matter (PM) and PM-bound chemical loads is challenging; in part due to the wide gradation of PM complex geometries of many unit operations and variable flow rates. Such challenges and the expense associated with resolving such challenges have led to the relatively common examination of a spectrum of unit operations and processes. This study applies the principles of computa- tional fluid dynamics (CFD) to predict the particle and pollutant clarification behavior of these systems subject to dilute multiphase flows, typical of rainfall-runoff, within computationally reasonable limits, to a scientifically acceptable degree of accuracy. The Navier-Stokes (NS) system of nonlinear partial differential equations for multi- phase hydrodynamics and separation of entrained particles are solved numerically over the unit operation control volume with the boundary and initial conditions defined and then solved numerically until the desired convergence criteria are met. Flow rates examined are scaled based on sizing of common unit operations such as hydrodynamic separators (HS), wet basins, or filters, and are examined from 1 to 100 percent of the system maximum hydraulic operating flow rate. A standard turbulence model is used to resolve flow, and a discrete phase model (DPM) is utilized to examine the particle clarification response. CFD results closely follow physical model results across the entire range of flow rates. Post-processing the CFD predictions provides an in-depth insight into the mechanistic behavior of unit operations by means of three dimensional (3-D) hydraulic profiles and particle trajectories. Results demon- strate the role of scour in the rapid degradation of unit operations that are not maintained. Comparisons are provided between measured and CFD modeled results and a mass balance error is identified. CFD is arguably the most powerful tool available for our profession since continuous simulation modeling.展开更多
A combined lattice Boltzmann and discrete element approach is proposedfor numerical modelling of magnetorheological fluids. In its formulation, the particledynamics is simulated by the discrete element method, while t...A combined lattice Boltzmann and discrete element approach is proposedfor numerical modelling of magnetorheological fluids. In its formulation, the particledynamics is simulated by the discrete element method, while the fluid field is resolvedwith the lattice Boltzmann method. The coupling between the fluid and the particlesare realized through the hydrodynamic interactions. Procedures for computing magnetic, contact and hydrodynamic forces are discussed in detail. The applicability ofthe proposed solution procedure is illustrated via a two-stage simulation of a MR fluidproblem with four different particle volume fractions. At the first stage, simulationsare performed for the particle chain formation upon application of an external magnetic field;and at the second stage, the rheological properties of the MR fluid underdifferent shear loading conditions are investigated with the particle chains establishedat the first stage as the initial configuration.展开更多
基金National Natural Science Foundation of China(U2004176,22008055)Technology Research Project of Henan Province(232102240034)are gratefully acknowledged.
文摘Liquid phase exfoliation(LPE)process for graphene production is usually carried out in stirred tank reactor and the interactions between the solvent and the graphite particles are important as to improve the production efficiency.In this paper,these interactions were revealed by computational fluid dynamics–discrete element method(CFD-DEM)method.Based on simulation results,both liquid phase flow hydrodynamics and particle motion behavior have been analyzed,which gave the general information of the multiphase flow behavior inside the stirred tank reactor as to graphene production.By calculating the threshold at the beginning of graphite exfoliation process,the shear force from the slip velocity was determined as the active force.These results can support the optimization of the graphene production process.
基金We thank Dr.David Dayton at RTI International for his help and valuable comments.We acknowledge a contribution from North Carolina Agricultural and Technical State University,supported by funds partially provided by U.S.Department of Energy(Grant#:EE0003138)U.S.National Scientific Foundation(Grant#:HRD-1242152).Mention of a trade name,proprietary products or company name is for presentation clarity and does not imply endorsement by the authors or the university.
文摘A dense discrete phase model combined with the kinetic theory of granular flows was used to study the bubbling characteristics and segregation of poly-dispersed particle mixtures in a thin fluidized bed.Our simulations showed that in using the hybrid Eulerian-Lagrangian method,the common use of one computational cell in the thickness direction of the thin bed does not predict wall friction correctly.Instead,a three-cell discretization of the thickness direction does predict the wall friction well but six cells were needed to prevent overprediction of the bed expansion.The change in specularity factor(SF)of the model not only affected the predictions of the velocity of particles,but also had a considerable impact on their flow pattern.A decrease in SF,which decreases wall friction,showed an over-prediction in the size of bubbles,particle velocities,and void fraction of the bed,and led to a shift in the circulation center toward the bottom of the bed.The segregation of the Geldart B particles was studied in the narrow range from 400 to 600μm with a standard deviation less than 10%of the average diameter.Simulations showed that large particles accumulated close to the distributor at the bottom of the bed and the center of the bed,but small particles moved towards the wall and top surface.The decrease in the mean particle size and spread in shape of the distribution improves mixing by up to 30%at a superficial gas velocity of around 2.5 times the minimum fluidization velocity.Log-normal mixtures with a small proportion of large particles had the most uniform distribution with a thin layer of jetsam forming at the bottom of the bed.Finally,experimental verification of the segregation and mixing of polydisperse particles with narrow size distribution is suggested.
基金We gratefully acknowledge the support of the National Basic Research Program of China (973 Program) (No. 2012CB720401 ) and the Key Project of National Natural Science Foundation of China (No. 51134008).
文摘lronmaking using an oxygen blast furnace is an attractive approach for reducing energy consumption in the iron and steel industry. This paper presents a numerical study of gas-solid flow in an oxygen blast fur- nace by coupling the discrete element method with computational fluid dynamics. The model reliability was verified by previous experimental results. The influences of particle diameter, shaft tuyere size, and specific ratio (X) of shaft-injected gas (51G) flowrate to total gas flowrate on the SIC penetration behavior and pressure field in the furnace were investigated. The results showed that gas penetration capacity in the furnace gradually decreased as the particle diameter decreased from 100 to 40 mm. Decreasing particle diameter and increasing shaft tuyere size both slightly increased the SIG concentration near the furnace wall but decreased it at the furnace center. The value of X has a significant impact on the SIG distribution. According to the pressure fields obtained under different conditions, the key factor affecting SIG penetration depth is the pressure difference between the upper and lower levels of the shaft tuyere. If the pressure difference is small, the SIG can easily penetrate to the furnace center.
基金supported by the National Science Foundation under the grants NSF-DMS-1206438 and NSF-DHS-1510249,the National Science Foundation under the grants NSF-DMS-1004638 and NSF-DMS-1313272the Research Fund of Indiana University
文摘As a first step towards the numerical analysis of the stochastic primitive equations of the atmosphere and the oceans, the time discretization of these equations by an implicit Euler scheme is studied. From the deterministic point of view, the 3D primitive equations are studied in their full form on a general domain and with physically realistic boundary conditions. From the probabilistic viewpoint, this paper deals with a wide class of nonlinear, state dependent, white noise forcings which may be interpreted in either the Itor the Stratonovich sense. The proof of convergence of the Euler scheme,which is carried out within an abstract framework, covers the equations for the oceans, the atmosphere, the coupled oceanic-atmospheric system as well as other related geophysical equations. The authors obtain the existence of solutions which are weak in both the PDE and probabilistic sense, a result which is new by itself to the best of our knowledge.
基金the National Key Basic Research Program of China(No.2012CB214904)the National Natural Science Foundation of China for Innovative Research Group(No.51221462)+2 种基金the National Natural Science Foundation of China(Nos.51304196,51134022,and 51174203)the Natural Science Foundation of Jiangsu Province of China(No. BK2012136)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20120095130001)
文摘Research on recycling waste Printed Circuit Boards(PCB) is at the forefront of preventing environmental pollution and finding ways to recycle resources.The Tapered Column Separation Bed(TCSB) is invented aiming at disposing the problem that fine particles of waste printed circuit boards cannot be separated efficiently so as to obtain further insight about the underlying mechanisms and demonstrate the separation feasibility in the tapered column separation bed.In this work,a Computational Fluid Dynamics(CFD) coupled with Discrete Element Method(DEM) model for two-phase flow has been extended to simulate the fluid-solid flow in the tapered column separation bed.Its validity is demonstrated by its successful capturing the key features of particles' flow pattern,velocity,the pressure distribution,the axial position with time and axial force for particles with different densities.Simulation results show that the plastic particles and resin particles become overflow,while copper particles,iron particles and aluminum particles successively become underflow,with a discharge water flow rate of 1 m^3/h,an obliquity of 30°.The simulated results agree reasonably well with the experimental observation.Using this equipment to separate waste PCBs is feasible,theoretically.
文摘【目的】为提高螺旋输送机的输送效率,降低输送机的功耗与磨损,探究在不同进料速率、螺旋轴转速与几何体摩擦系数下,超细碳酸钙在水平变径变距螺旋输送机内的颗粒流动状态、出口质量流量、输送机功耗与磨损分布。【方法】使用计算流体动力学(computational fluid dynamics,CFD)与离散单元法(discrete element method,DEM)双向耦合数值模拟的方法,对螺旋输送机在不同转速下的质量流率进行分析对比,验证数值模型的正确性。【结果】摩擦系数对颗粒的运动有较大影响,颗粒流的轴向速度峰值和质量流率峰值随着摩擦系数的增加先增大再减小;随着下料速度和摩擦系数的增大,输送机功率明显增大,且摩擦系数在高进料速度与低转速的情况下对功耗的影响相对于低进料速度和高转速更加明显;磨损较严重的区域集中在下料口处的螺旋轴与螺旋叶片的边缘处。【结论】简单增大或减小摩擦系数并不能提高颗粒的轴向速度和质量流量,而是存在一个局部最优参数组合;适当地提高转速能够减小颗粒密实度与颗粒停留时间,从而减小输送机的功耗与几何体磨损。
文摘Control of rainfall-runoff particulate matter (PM) and PM-bound chemical loads is challenging; in part due to the wide gradation of PM complex geometries of many unit operations and variable flow rates. Such challenges and the expense associated with resolving such challenges have led to the relatively common examination of a spectrum of unit operations and processes. This study applies the principles of computa- tional fluid dynamics (CFD) to predict the particle and pollutant clarification behavior of these systems subject to dilute multiphase flows, typical of rainfall-runoff, within computationally reasonable limits, to a scientifically acceptable degree of accuracy. The Navier-Stokes (NS) system of nonlinear partial differential equations for multi- phase hydrodynamics and separation of entrained particles are solved numerically over the unit operation control volume with the boundary and initial conditions defined and then solved numerically until the desired convergence criteria are met. Flow rates examined are scaled based on sizing of common unit operations such as hydrodynamic separators (HS), wet basins, or filters, and are examined from 1 to 100 percent of the system maximum hydraulic operating flow rate. A standard turbulence model is used to resolve flow, and a discrete phase model (DPM) is utilized to examine the particle clarification response. CFD results closely follow physical model results across the entire range of flow rates. Post-processing the CFD predictions provides an in-depth insight into the mechanistic behavior of unit operations by means of three dimensional (3-D) hydraulic profiles and particle trajectories. Results demon- strate the role of scour in the rapid degradation of unit operations that are not maintained. Comparisons are provided between measured and CFD modeled results and a mass balance error is identified. CFD is arguably the most powerful tool available for our profession since continuous simulation modeling.
文摘A combined lattice Boltzmann and discrete element approach is proposedfor numerical modelling of magnetorheological fluids. In its formulation, the particledynamics is simulated by the discrete element method, while the fluid field is resolvedwith the lattice Boltzmann method. The coupling between the fluid and the particlesare realized through the hydrodynamic interactions. Procedures for computing magnetic, contact and hydrodynamic forces are discussed in detail. The applicability ofthe proposed solution procedure is illustrated via a two-stage simulation of a MR fluidproblem with four different particle volume fractions. At the first stage, simulationsare performed for the particle chain formation upon application of an external magnetic field;and at the second stage, the rheological properties of the MR fluid underdifferent shear loading conditions are investigated with the particle chains establishedat the first stage as the initial configuration.