Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This st...Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This study presents a systematic outcrop research of fracture pattern variations in a complicated rock slope,and the qualitative and quantitative study of the complex phenomena impact on threedimensional(3D)discrete fracture network(DFN)modeling.As the studies of the outcrop fracture pattern have been so far focused on local variations,thus,we put forward a statistical analysis of global variations.The entire outcrop is partitioned into several subzones,and the subzone-scale variability of fracture geometric properties is analyzed(including the orientation,the density,and the trace length).The results reveal significant variations in fracture characteristics(such as the concentrative degree,the average orientation,the density,and the trace length)among different subzones.Moreover,the density of fracture sets,which is approximately parallel to the slope surface,exhibits a notably higher value compared to other fracture sets across all subzones.To improve the accuracy of the DFN modeling,the effects of three common phenomena resulting from vegetation and rockfalls are qualitatively analyzed and the corresponding quantitative data processing solutions are proposed.Subsequently,the 3D fracture geometric parameters are determined for different areas of the high-steep rock slope in terms of the subzone dimensions.The results show significant variations in the same set of 3D fracture parameters across different regions with density differing by up to tenfold and mean trace length exhibiting differences of 3e4 times.The study results present precise geological structural information,improve modeling accuracy,and provide practical solutions for addressing complex outcrop issues.展开更多
Analyzing rock mass seepage using the discrete fracture network(DFN)flow model poses challenges when dealing with complex fracture networks.This paper presents a novel DFN flow model that incorporates the actual conne...Analyzing rock mass seepage using the discrete fracture network(DFN)flow model poses challenges when dealing with complex fracture networks.This paper presents a novel DFN flow model that incorporates the actual connections of large-scale fractures.Notably,this model efficiently manages over 20,000 fractures without necessitating adjustments to the DFN geometry.All geometric analyses,such as identifying connected fractures,dividing the two-dimensional domain into closed loops,triangulating arbitrary loops,and refining triangular elements,are fully automated.The analysis processes are comprehensively introduced,and core algorithms,along with their pseudo-codes,are outlined and explained to assist readers in their programming endeavors.The accuracy of geometric analyses is validated through topological graphs representing the connection relationships between fractures.In practical application,the proposed model is employed to assess the water-sealing effectiveness of an underground storage cavern project.The analysis results indicate that the existing design scheme can effectively prevent the stored oil from leaking in the presence of both dense and sparse fractures.Furthermore,following extensive modification and optimization,the scale and precision of model computation suggest that the proposed model and developed codes can meet the requirements of engineering applications.展开更多
Structure plane is one of the important factors affecting the stability and failure mode of rock mass engineering.Rock mass structure characterization is the basic work of rock mechanics research and the important con...Structure plane is one of the important factors affecting the stability and failure mode of rock mass engineering.Rock mass structure characterization is the basic work of rock mechanics research and the important content of numerical simulation.A new 3-dimensional rough discrete fracture network(RDFN3D)model and its modeling method based on the Weierstrass-Mandelbrot(W-M)function were presented in this paper.The RDFN3D model,which improves and unifies the modelling methods for the complex structural planes,has been realized.The influence of fractal dimension,amplitude,and surface precision on the modeling parameters of RDFN3D was discussed.The reasonable W-M parameters suitable for the roughness coefficient of JRC were proposed,and the relationship between the mathematical model and the joint characterization was established.The RDFN3D together with the smooth 3-dimensional discrete fracture network(DFN3D)models were successfully exported to the drawing exchange format,which will provide a wide application in numerous numerical simulation codes including both the continuous and discontinuous methods.The numerical models were discussed using the COMSOL Multiphysics code and the 3-dimensional particle flow code,respectively.The reliability of the RDFN3D model was preliminarily discussed and analyzed.The roughness and spatial connectivity of the fracture networks have a dominant effect on the fluid flow patterns.The research results can provide a new geological model and analysis model for numerical simulation and engineering analysis of jointed rock mass.展开更多
Fractured reservoirs are an important target for oil and gas exploration in the Tarim Basin and the prediction of this type of reservoir is challenging.Due to the complicated fracture system in the Tarim Basin,the con...Fractured reservoirs are an important target for oil and gas exploration in the Tarim Basin and the prediction of this type of reservoir is challenging.Due to the complicated fracture system in the Tarim Basin,the conventional AVO inversion method based on HTI theory to predict fracture development will result in some errors.Thus,an integrated research concept for fractured reservoir prediction is put forward in this paper.Seismic modeling plays a bridging role in this concept,and the establishment of an anisotropic fracture model by Discrete Fracture Network (DFN) is the key part.Because the fracture system in the Tarim Basin shows complex anisotropic characteristics,it is vital to build an effective anisotropic model.Based on geological,well logging and seismic data,an effective anisotropic model of complex fracture systems can be set up with the DFN method.The effective elastic coefficients,and the input data for seismic modeling can be calculated.Then seismic modeling based on this model is performed,and the seismic response characteristics are analyzed.The modeling results can be used in the following AVO inversion for fracture detection.展开更多
Heterogeneity is an inherent component of rock and may be present in different forms including mineralheterogeneity, geometrical heterogeneity, weak grain boundaries and micro-defects. Microcracks areusually observed ...Heterogeneity is an inherent component of rock and may be present in different forms including mineralheterogeneity, geometrical heterogeneity, weak grain boundaries and micro-defects. Microcracks areusually observed in crystalline rocks in two forms: natural and stress-induced; the amount of stressinducedmicrocracking increases with depth and in-situ stress. Laboratory results indicate that thephysical properties of rocks such as strength, deformability, P-wave velocity and permeability areinfluenced by increase in microcrack intensity. In this study, the finite-discrete element method (FDEM)is used to model microcrack heterogeneity by introducing into a model sample sets of microcracks usingthe proposed micro discrete fracture network (mDFN) approach. The characteristics of the microcracksrequired to create mDFN models are obtained through image analyses of thin sections of Lac du Bonnetgranite adopted from published literature. A suite of two-dimensional laboratory tests including uniaxial,triaxial compression and Brazilian tests is simulated and the results are compared with laboratory data.The FDEM-mDFN models indicate that micro-heterogeneity has a profound influence on both the mechanicalbehavior and resultant fracture pattern. An increase in the microcrack intensity leads to areduction in the strength of the sample and changes the character of the rock strength envelope. Spallingand axial splitting dominate the failure mode at low confinement while shear failure is the dominantfailure mode at high confinement. Numerical results from simulated compression tests show thatmicrocracking reduces the cohesive component of strength alone, and the frictional strength componentremains unaffected. Results from simulated Brazilian tests show that the tensile strength is influenced bythe presence of microcracks, with a reduction in tensile strength as microcrack intensity increases. Theimportance of microcrack heterogeneity in reproducing a bi-linear or S-shape failure envelope and itseffects on the mechanisms leading to spalling damage near an underground opening are also discussed.展开更多
The geometric characteristics of fractures within a rock mass can be inferred by the data sampling from boreholes or exposed surfaces.Recently,the universal elliptical disc(UED)model was developed to represent natural...The geometric characteristics of fractures within a rock mass can be inferred by the data sampling from boreholes or exposed surfaces.Recently,the universal elliptical disc(UED)model was developed to represent natural fractures,where the fracture is assumed to be an elliptical disc and the fracture orientation,rotation angle,length of the long axis and ratio of short-long axis lengths are considered as variables.This paper aims to estimate the fracture size-and azimuth-related parameters in the UED model based on the trace information from sampling windows.The stereological relationship between the trace length,size-and azimuth-related parameters of the UED model was established,and the formulae of the mean value and standard deviation of trace length were proposed.The proposed formulae were validated via the Monte Carlo simulations with less than 5%of error rate between the calculated and true values.With respect to the estimation of the size-and azimuth-related parameters using the trace length,an optimization method was developed based on the pre-assumed size and azimuth distribution forms.A hypothetical case study was designed to illustrate and verify the parameter estimation method,where three combinations of the sampling windows were used to estimate the parameters,and the results showed that the estimated values could agree well with the true values.Furthermore,a hypothetical three-dimensional(3D)elliptical fracture network was constructed,and the circular disc,non-UED and UED models were used to represent it.The simulated trace information from different models was compared,and the results clearly illustrated the superiority of the proposed UED model over the existing circular disc and non-UED models。展开更多
Severe well interference through complex fracture networks(CFNs)can be observed among multi-well pads in low permeability reservoirs.The well interference analysis between multi-fractured horizontal wells(MFHWs)is vit...Severe well interference through complex fracture networks(CFNs)can be observed among multi-well pads in low permeability reservoirs.The well interference analysis between multi-fractured horizontal wells(MFHWs)is vitally important for reservoir effective development.Well interference has been historically investigated by pressure transient analysis,while it has shown that rate transient analysis has great potential in well interference diagnosis.However,the impact of complex fracture networks(CFNs)on rate transient behavior of parent well and child well in unconventional reservoirs is still not clear.To further investigate,this paper develops an integrated approach combining pressure and rate transient analysis for well interference diagnosis considering CFNs.To perform multi-well simulation considering CFNs,non-intrusive embedded discrete fracture model approach was applied for coupling fracture with reservoir models.The impact of CFN including natural fractures and frac-hits on pressure and rate transient behavior in multi-well system was investigated.On a logelog plot,interference flow and compound linear flow are two new flow regimes caused by nearby producers.When both NFs and frac-hits are present in the reservoir,frac-hits have a greater impact on well#1 which contains frac-hits,and NFs have greater impact on well#3 which does not have frac-hits.For all well producing circumstances,it might be challenging to see divergence during pseudosteady state flow brought on by frac-hits on the logelog plot.Besides,when NFs occur,reservoir depletion becomes noticeable in comparison to frac-hits in pressure distribution.Application of this integrated approach demonstrates that it works well to characterize the well interference among different multi-fractured horizontal wells in a well pad.Better reservoir evaluation can be acquired based on the new features observed in the novel model,demonstrating the practicability of the proposed approach.The findings of this study can help for better evaluating well interference degree in multi-well systems combing PTA and RTA,which can reduce the uncertainty and improve the accuracy of the well interference analysis based on both field pressure and rate data.展开更多
Natural fracture data from one of the Carboniferous shale masses in the eastern Qaidam Basin were used to establish a stochastic model of a discrete fracture network and to perform discrete element simulation research...Natural fracture data from one of the Carboniferous shale masses in the eastern Qaidam Basin were used to establish a stochastic model of a discrete fracture network and to perform discrete element simulation research on the size efect and mechanical parameters of shale.Analytical solutions of fctitious joints in transversely isotropic media were derived,which made it possible for the proposed numerical model to simulate the bedding and natural fractures in shale masses.The results indicate that there are two main factors infuencing the representative elementary volume(REV)size of a shale mass.The frst and most decisive factor is the presence of natural fractures in the block itself.The second is the anisotropy ratio:the greater the anisotropy is,the larger the REV.The bedding angle has little infuence on the REV size,whereas it has a certain infuence on the mechanical parameters of the rock mass.When the bedding angle approaches the average orientation of the natural fractures,the mechanical parameters of the shale blocks decrease greatly.The REV representing the mechanical properties of the Carboniferous shale masses in the eastern Qaidam Basin were comprehensively identifed by considering the infuence of bedding and natural fractures.When the numerical model size is larger than the REV,the fractured rock mass discontinuities can be transformed into equivalent continuities,which provides a method for simulating shale with natural fractures and bedding to analyze the stability of a borehole wall in shale.展开更多
Prediction of radon flux from the fractured zone of a propagating cave mine is basically associated with uncertainty and complexity. For instance, there is restricted access to these zones for field measure- ments, an...Prediction of radon flux from the fractured zone of a propagating cave mine is basically associated with uncertainty and complexity. For instance, there is restricted access to these zones for field measure- ments, and it is quite difficult to replicate the complex nature of both natural and induced fractures in these zones in laboratory studies. Hence, a technique for predicting radon flux from a fractured rock using a discrete fracture network (DFN) model is developed to address these difficulties. This model quantifies the contribution of fractures to the total radon flux, and estimates the fracture density from a measured radon flux considering the effects of advection, diffusion, as well as radon generation and decay. Radon generation and decay are classified as reaction processes. Therefore, the equation solved is termed as the advection-diffusion-reaction equation (ADRE). Peclet number (Pe), a conventional dimensionless parameter that indicates the ratio of mass transport by advection to diffusion, is used to classify the transport regimes. The results show that the proposed model effectively predicts radon flux from a fractured rock. An increase in fracture density for a rock sample with uniformly distributed radon generation rate can elevate radon flux significantly compared with another rock sample with an equivalent increase in radon generation rate. In addition to Pe, two other independent dimensionless parameters (derived for radon transport through fractures) significantly affect radon dimensionless flux. Findings provide insight into radon transport through fractured rocks and can be used to improve radon control measures for proactive mitigation.展开更多
The production efficiency of shale gas is affected by the interaction between hydraulic and natural fractures.This study presents a simulation of natural fractures in shale reservoirs,based on a discrete fracture netw...The production efficiency of shale gas is affected by the interaction between hydraulic and natural fractures.This study presents a simulation of natural fractures in shale reservoirs,based on a discrete fracture network(DFN)method for hydraulic fracturing engineering.Fracture properties of the model are calculated from core fracture data,according to statistical mathematical analysis.The calculation results make full use of the quantitative information of core fracture orientation,density,opening and length,which constitute the direct and extensive data of mining engineering.The reliability and applicability of the model are analyzed with regard to model size and density,a calculation method for dominant size and density being proposed.Then,finite element analysis is applied to a hydraulic fracturing numerical simulation of a shale fractured reservoir in southeastern Chongqing.The hydraulic pressure distribution,fracture propagation,acoustic emission information and in situ stress changes during fracturing are analyzed.The results show the application of fracture statistics in fracture modeling and the influence of fracture distribution on hydraulic fracturing engineering.The present analysis may provide a reference for shale gas exploitation.展开更多
Well interference has become a common phenomenon with the increasing scale of horizontal well fracturing.Recent studies on well interference in horizontal wells do not properly reflect the physical model of the postfr...Well interference has become a common phenomenon with the increasing scale of horizontal well fracturing.Recent studies on well interference in horizontal wells do not properly reflect the physical model of the postfracturing well groups and the realistic fracturing process of infill wells.Establishing the correspondence between well interference causative factors and manifestations is of great significance for infill well deployment and secondary oil recovery.In this work,we develop a numerical model that considers low velocity non-Darcy seepage inshale reservoirs to study the inter-well interferencephenomenon that occurs in theSantanghufield,andconstruct an explicit hydraulic fracture and complex natural fracture network model with an embedded discrete fracture model,focusing on the effect of fracture network morphology on well interactions.The model also considers a multi-segment wellbore model to accommodate the effect of inter-well crossflow on wellbore tubular flow.The changes in formation pressure and water saturation during fracturing are performed by controlling the injection pressure and water injection rate.The result shows that the shape of the fracture network generated by the infill well with the old well determines the subsequent fluid and oil-increasing performance of the disturbed well.The synergistic production or competitive relationship formed by fractures with different connectivity between the two wells determines the positive and negative effects of the interference.The paper also investigates the adaptation study of water injection huff and puff schemes for well groups with different connectivity,and demonstrated a potential yield increase of up to 10.85%under adaptation injection.This method of identifying well interference based on the production dynamics of affected wells and the subsequent corresponding water injection method provides valuable references for the selection of secondary oil recovery measures.展开更多
Based on the characteristics of fractures in naturally fractured reservoir and a discrete-fracture model, a fracture network numerical well test model is developed. Bottom hole pressure response curves and the pressur...Based on the characteristics of fractures in naturally fractured reservoir and a discrete-fracture model, a fracture network numerical well test model is developed. Bottom hole pressure response curves and the pressure field are obtained by solving the model equations with the finite-element method. By analyzing bottom hole pressure curves and the fluid flow in the pressure field, seven flow stages can be recognized on the curves. An upscaling method is developed to compare with the dual-porosity model (DPM). The comparisons results show that the DPM overestimates the inter-porosity coefficient ), and the storage factor w. The analysis results show that fracture conductivity plays a leading role in the fluid flow. Matrix permeability influences the beginning time of flow from the matrix to fractures. Fractures density is another important parameter controlling the flow. The fracture linear flow is hidden under the large fracture density. The pressure propagation is slower in the direction of larger fracture density.展开更多
The generation method of three-dimensional fractal discrete fracture network(FDFN)based on multiplicative cascade process was developed.The complex multi-scale fracture system in shale after fracturing was characteriz...The generation method of three-dimensional fractal discrete fracture network(FDFN)based on multiplicative cascade process was developed.The complex multi-scale fracture system in shale after fracturing was characterized by coupling the artificial fracture model and the natural fracture model.Based on an assisted history matching(AHM)using multiple-proxy-based Markov chain Monte Carlo algorithm(MCMC),an embedded discrete fracture modeling(EDFM)incorporated with reservoir simulator was used to predict productivity of shale gas well.When using the natural fracture generation method,the distribution of natural fracture network can be controlled by fractal parameters,and the natural fracture network generated coupling with artificial fractures can characterize the complex system of different-scale fractures in shale after fracturing.The EDFM,with fewer grids and less computation time consumption,can characterize the attributes of natural fractures and artificial fractures flexibly,and simulate the details of mass transfer between matrix cells and fractures while reducing computation significantly.The combination of AMH and EDFM can lower the uncertainty of reservoir and fracture parameters,and realize effective inversion of key reservoir and fracture parameters and the productivity forecast of shale gas wells.Application demonstrates the results from the proposed productivity prediction model integrating FDFN,EDFM and AHM have high credibility.展开更多
In open pit mining,uncontrolled block instabilities have serious social,economic and regulatory consequences,such as casualties,disruption of operation and increased regulation difficulties.For this reason,bench face ...In open pit mining,uncontrolled block instabilities have serious social,economic and regulatory consequences,such as casualties,disruption of operation and increased regulation difficulties.For this reason,bench face angle,as one of the controlling parameters associated with block instabilities,should be carefully designed for sustainable mining.This study introduces a discrete fracture network(DFN)-based probabilistic block theory approach for the fast design of the bench face angle.A major advantage is the explicit incorporation of discontinuity size and spatial distribution in the procedure of key blocks testing.The proposed approach was applied to a granite mine in China.First,DFN models were generated from a multi-step modeling procedure to simulate the complex structural characteristics of pit slopes.Then,a modified key blocks searching method was applied to the slope faces modeled,and a cumulative probability of failure was obtained for each sector.Finally,a bench face angle was determined commensurate with an acceptable risk level of stability.The simulation results have shown that the number of hazardous traces exposed on the slope face can be significantly reduced when the suggested bench face angle is adopted,indicating an extremely low risk of uncontrolled block instabilities.展开更多
Since natural fractures are often non-equidimensional,the circular disc model still has great limitations.By contrast,the elliptical disc model is more applicable to representing natural fractures,especially for slend...Since natural fractures are often non-equidimensional,the circular disc model still has great limitations.By contrast,the elliptical disc model is more applicable to representing natural fractures,especially for slender ones.This paper developed a universal elliptical disc(UED)model by incorporating the center point,size,and azimuth of fractures as variables.Specifically,with respect to the azimuth of elliptical fractures in three-dimensional(3D)space,we proposed a paradigm to construct its probability density function(PDF)by coupling the orientation and rotation angle of long axis based on three coordinate transformations.To illustrate the construction process of the PDF of the fracture azimuth,we took the orientation following the Fisher distribution and the rotation angle following Von Mises distribution as an example.A rock slope is used to show the use of the developed UED model,and the 3D DFNs for the slope rock mass are generated by Monte Carlo simulation.In addition,the DFNs for the rock mass are also generated based on the existing circular disc model and non-universal elliptical disc model.The comparison results from the three models clearly illustrate the superiority of the UED model over the existing circular and non-universal elliptical disc models.展开更多
It is well known that the complicated channeling of fluid flow and heat transfer is strongly related with the intricate natural fracture system.However,it is still challenging to set up the fracture network model whic...It is well known that the complicated channeling of fluid flow and heat transfer is strongly related with the intricate natural fracture system.However,it is still challenging to set up the fracture network model which is strong heterogeneous.Compared with other methods(e.g.equivalent continuum model(ECM),discrete fracture model(DFM),and ECM-DFM),the fracture flow module in the COMSOL Multiphysics simulator is powerful in definition of fractures as the inner flow boundary existing in the porous media.Thus it is selected to simulate the fluid flow and heat transfer in the geothermal-developed fractured granite of Sanguliu area located at Liaodong Peninsula,Eastern China.The natural faults/fractures based on field investigation combined with the discrete fracture network(DFN)generated by the MATLAB are used to represent the two-dimensional geological model.Numerical results show that early thermal breakthrough occurs at the production well caused by quick flow of cold water along the highly connected fractures.Suitable hydraulic fracturing treatments with proper injection rates,locations,etc.can efficiently hinder the thermal breakthrough time in the natural fracture system.Large well spacing helps the long-term operation of geothermal production,but it is highly dependent on the geometrical morphology of the fracture network.The enhancement of reservoir properties at the near-well regions can also increase the geothermal production efficiency.The results in this study can provide references to achieve a sustainable geothermal exploitation in fractured granitic geothermal reservoirs or hot dry rocks at depth.展开更多
Analysis and prediction of structural instabilities in open pit mines are an important design and operational consideration for ensuring safety and productivity of the operation. Unstable wedges and blocks occurring a...Analysis and prediction of structural instabilities in open pit mines are an important design and operational consideration for ensuring safety and productivity of the operation. Unstable wedges and blocks occurring at the surface of the pit walls may be identified through three-dimensional(3D) image analysis combined with the discrete fracture network(DFN) approach. Kinematic analysis based on polyhedral modelling can be used for first pass analysis but cannot capture composite failure mechanisms involving both structurally controlled and rock mass progressive failures. A methodology is proposed in this paper to overcome such limitations by coupling DFN models with geomechanical simulations based on the discrete element method(DEM). Further, high resolution photogrammetric data are used to identify valid model scenarios. An identified wedge failure that occurred in an Australian coal mine is used to validate the methodology. In this particular case, the failure surface was induced as a result of the rock mass progressive failure that developed from the toe of the structure inside the intact rock matrix. Analysis has been undertaken to determine in what scenarios the measured and predicted failure surfaces can be used to calibrate strength parameters in the model.展开更多
Discrete fracture network(DFN) models have been proved to be effective tools for the characterisation of rock masses by using statistical distributions to generate realistic three-dimensional(3 D) representations of a...Discrete fracture network(DFN) models have been proved to be effective tools for the characterisation of rock masses by using statistical distributions to generate realistic three-dimensional(3 D) representations of a natural fracture network. The quality of DFN modelling relies on the quality of the field data and their interpretation. In this context, advancements in remote data acquisition have now made it possible to acquire high-quality data potentially not accessible by conventional scanline and window mapping. This paper presents a comparison between aggregate and disaggregate approaches to define fracture sets, and their role with respect to the definition of key input parameters required to generate DFN models. The focal point of the discussion is the characterisation of in situ block size distribution(IBSD) using DFN methods. An application of IBSD is the assessment of rock mass quality through rock mass classification systems such as geological strength index(GSI). As DFN models are becoming an almost integral part of many geotechnical and mining engineering problems, the authors present a method whereby realistic representation of 3 D fracture networks and block size analysis are used to estimate GSI ratings, with emphasis on the limitations that exist in rock engineering design when assigning a unique GSI value to spatially variable rock masses.展开更多
This paper presents an integrated study from fracture propagation modeling to gas flow modeling and a correlation analysis to explore the key controlling factors of intensive volume fracturing.The fracture propagation...This paper presents an integrated study from fracture propagation modeling to gas flow modeling and a correlation analysis to explore the key controlling factors of intensive volume fracturing.The fracture propagation model takes into account the interaction between hydraulic fracture and natural fracture by means of the displacement discontinuity method(DDM)and the Picard iterative method.The shale gas flow considers multiple transport mechanisms,and the flow in the fracture network is handled by the embedded discrete fracture model(EDFM).A series of numerical simulations are conducted to analyze the effects of the cluster number,stage spacing,stress difference coefficient,and natural fracture distribution on the stimulated fracture area,fractal dimension,and cumulative gas production,and their correlation coefficients are obtained.The results show that the most influential factors to the stimulated fracture area are the stress difference ratio,stage spacing,and natural fracture density,while those to the cumulative gas production are the stress difference ratio,natural fracture density,and cluster number.This indicates that the stress condition dominates the gas production,and employing intensive volume fracturing(by properly increasing the cluster number)is beneficial for improving the final cumulative gas production.展开更多
Fluid flow in fractured media has been studied for decades and received considerable attention in the oil and gas industry because of the high productivity of naturally fractured reservoirs.Due to formation complexity...Fluid flow in fractured media has been studied for decades and received considerable attention in the oil and gas industry because of the high productivity of naturally fractured reservoirs.Due to formation complexity and reservoir heterogeneity,characterizing fluid flow with an appropriate reservoir model presents a challenging task that differs relatively from homogeneous conventional reservoirs in many aspects of view,including geological,petrophysical,production,and economics.In most fractured reservoirs,fracture networks create complex pathways that affect hydrocarbon flow,well performance,hence reservoir characterization.A better and comprehensive understanding of the available reservoir modeling approaches is much needed to accurately characterize fluid flow behavior in NFRs.Therefore,in this paper,a perspective review of the available modeling approaches was presented for fluid flow characterization in naturally fractured medium.Modeling methods were evaluated in terms of their description,application,advantages,and disadvantages.This study has also included the applications of these reservoir models in fluid flow characterizing studies and governing equations for fluid flow.Dual continuum models were proved to be better than single continuum models in the presence of large scale fractures.In comparison,discrete models were more appropriate for reservoirs that contain a smaller number of fractures.However,hybrid modeling was the best method to provide accurate and scalable fluid flow modeling.It is our understanding that this paper will bridge the gap between the fundamental understanding and application of NFRs modeling approaches and serve as a useful reference for engineers and researchers for present and future applications.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2022YFC3080200)the National Natural Science Foundation of China(Grant No.42022053)the China Postdoctoral Science Foundation(Grant No.2023M731264).
文摘Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This study presents a systematic outcrop research of fracture pattern variations in a complicated rock slope,and the qualitative and quantitative study of the complex phenomena impact on threedimensional(3D)discrete fracture network(DFN)modeling.As the studies of the outcrop fracture pattern have been so far focused on local variations,thus,we put forward a statistical analysis of global variations.The entire outcrop is partitioned into several subzones,and the subzone-scale variability of fracture geometric properties is analyzed(including the orientation,the density,and the trace length).The results reveal significant variations in fracture characteristics(such as the concentrative degree,the average orientation,the density,and the trace length)among different subzones.Moreover,the density of fracture sets,which is approximately parallel to the slope surface,exhibits a notably higher value compared to other fracture sets across all subzones.To improve the accuracy of the DFN modeling,the effects of three common phenomena resulting from vegetation and rockfalls are qualitatively analyzed and the corresponding quantitative data processing solutions are proposed.Subsequently,the 3D fracture geometric parameters are determined for different areas of the high-steep rock slope in terms of the subzone dimensions.The results show significant variations in the same set of 3D fracture parameters across different regions with density differing by up to tenfold and mean trace length exhibiting differences of 3e4 times.The study results present precise geological structural information,improve modeling accuracy,and provide practical solutions for addressing complex outcrop issues.
基金sponsored by the General Program of the National Natural Science Foundation of China(Grant Nos.52079129 and 52209148)the Hubei Provincial General Fund,China(Grant No.2023AFB567)。
文摘Analyzing rock mass seepage using the discrete fracture network(DFN)flow model poses challenges when dealing with complex fracture networks.This paper presents a novel DFN flow model that incorporates the actual connections of large-scale fractures.Notably,this model efficiently manages over 20,000 fractures without necessitating adjustments to the DFN geometry.All geometric analyses,such as identifying connected fractures,dividing the two-dimensional domain into closed loops,triangulating arbitrary loops,and refining triangular elements,are fully automated.The analysis processes are comprehensively introduced,and core algorithms,along with their pseudo-codes,are outlined and explained to assist readers in their programming endeavors.The accuracy of geometric analyses is validated through topological graphs representing the connection relationships between fractures.In practical application,the proposed model is employed to assess the water-sealing effectiveness of an underground storage cavern project.The analysis results indicate that the existing design scheme can effectively prevent the stored oil from leaking in the presence of both dense and sparse fractures.Furthermore,following extensive modification and optimization,the scale and precision of model computation suggest that the proposed model and developed codes can meet the requirements of engineering applications.
基金This work was financially supported by the National Key R&D Program of China(No.2021YFC2900500)the National Natural Science Foundation of China(Nos.52074020 and 42202306)+2 种基金the Open Fund of State Key Laboratory of Water Resource Protection and Utilization in Coal Mining(No.WPUKFJJ2019-06)the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities)(No.FRF-IDRY-21001)the Natural Science Foundation of Jiangsu Province,China(No.BK20200993).
文摘Structure plane is one of the important factors affecting the stability and failure mode of rock mass engineering.Rock mass structure characterization is the basic work of rock mechanics research and the important content of numerical simulation.A new 3-dimensional rough discrete fracture network(RDFN3D)model and its modeling method based on the Weierstrass-Mandelbrot(W-M)function were presented in this paper.The RDFN3D model,which improves and unifies the modelling methods for the complex structural planes,has been realized.The influence of fractal dimension,amplitude,and surface precision on the modeling parameters of RDFN3D was discussed.The reasonable W-M parameters suitable for the roughness coefficient of JRC were proposed,and the relationship between the mathematical model and the joint characterization was established.The RDFN3D together with the smooth 3-dimensional discrete fracture network(DFN3D)models were successfully exported to the drawing exchange format,which will provide a wide application in numerous numerical simulation codes including both the continuous and discontinuous methods.The numerical models were discussed using the COMSOL Multiphysics code and the 3-dimensional particle flow code,respectively.The reliability of the RDFN3D model was preliminarily discussed and analyzed.The roughness and spatial connectivity of the fracture networks have a dominant effect on the fluid flow patterns.The research results can provide a new geological model and analysis model for numerical simulation and engineering analysis of jointed rock mass.
基金co-supported by the National Basic Research Program of China(Grant No.2011CB201103)the National Science and Technology Major Project(GrantNo.2011ZX05004003)
文摘Fractured reservoirs are an important target for oil and gas exploration in the Tarim Basin and the prediction of this type of reservoir is challenging.Due to the complicated fracture system in the Tarim Basin,the conventional AVO inversion method based on HTI theory to predict fracture development will result in some errors.Thus,an integrated research concept for fractured reservoir prediction is put forward in this paper.Seismic modeling plays a bridging role in this concept,and the establishment of an anisotropic fracture model by Discrete Fracture Network (DFN) is the key part.Because the fracture system in the Tarim Basin shows complex anisotropic characteristics,it is vital to build an effective anisotropic model.Based on geological,well logging and seismic data,an effective anisotropic model of complex fracture systems can be set up with the DFN method.The effective elastic coefficients,and the input data for seismic modeling can be calculated.Then seismic modeling based on this model is performed,and the seismic response characteristics are analyzed.The modeling results can be used in the following AVO inversion for fracture detection.
文摘Heterogeneity is an inherent component of rock and may be present in different forms including mineralheterogeneity, geometrical heterogeneity, weak grain boundaries and micro-defects. Microcracks areusually observed in crystalline rocks in two forms: natural and stress-induced; the amount of stressinducedmicrocracking increases with depth and in-situ stress. Laboratory results indicate that thephysical properties of rocks such as strength, deformability, P-wave velocity and permeability areinfluenced by increase in microcrack intensity. In this study, the finite-discrete element method (FDEM)is used to model microcrack heterogeneity by introducing into a model sample sets of microcracks usingthe proposed micro discrete fracture network (mDFN) approach. The characteristics of the microcracksrequired to create mDFN models are obtained through image analyses of thin sections of Lac du Bonnetgranite adopted from published literature. A suite of two-dimensional laboratory tests including uniaxial,triaxial compression and Brazilian tests is simulated and the results are compared with laboratory data.The FDEM-mDFN models indicate that micro-heterogeneity has a profound influence on both the mechanicalbehavior and resultant fracture pattern. An increase in the microcrack intensity leads to areduction in the strength of the sample and changes the character of the rock strength envelope. Spallingand axial splitting dominate the failure mode at low confinement while shear failure is the dominantfailure mode at high confinement. Numerical results from simulated compression tests show thatmicrocracking reduces the cohesive component of strength alone, and the frictional strength componentremains unaffected. Results from simulated Brazilian tests show that the tensile strength is influenced bythe presence of microcracks, with a reduction in tensile strength as microcrack intensity increases. Theimportance of microcrack heterogeneity in reproducing a bi-linear or S-shape failure envelope and itseffects on the mechanisms leading to spalling damage near an underground opening are also discussed.
基金funded by National Natural Science Foundation of China(Grant No.41972264)Zhejiang Provincial Natural Science Foundation of China(Grant No.LR22E080002)the Observation and Research Station of Geohazards in Zhejiang,Ministry of Natural Resources,China(Grant No.ZJDZGCZ-2021).
文摘The geometric characteristics of fractures within a rock mass can be inferred by the data sampling from boreholes or exposed surfaces.Recently,the universal elliptical disc(UED)model was developed to represent natural fractures,where the fracture is assumed to be an elliptical disc and the fracture orientation,rotation angle,length of the long axis and ratio of short-long axis lengths are considered as variables.This paper aims to estimate the fracture size-and azimuth-related parameters in the UED model based on the trace information from sampling windows.The stereological relationship between the trace length,size-and azimuth-related parameters of the UED model was established,and the formulae of the mean value and standard deviation of trace length were proposed.The proposed formulae were validated via the Monte Carlo simulations with less than 5%of error rate between the calculated and true values.With respect to the estimation of the size-and azimuth-related parameters using the trace length,an optimization method was developed based on the pre-assumed size and azimuth distribution forms.A hypothetical case study was designed to illustrate and verify the parameter estimation method,where three combinations of the sampling windows were used to estimate the parameters,and the results showed that the estimated values could agree well with the true values.Furthermore,a hypothetical three-dimensional(3D)elliptical fracture network was constructed,and the circular disc,non-UED and UED models were used to represent it.The simulated trace information from different models was compared,and the results clearly illustrated the superiority of the proposed UED model over the existing circular disc and non-UED models。
基金The authors are grateful to the financial support from China Postdoctoral Science Foundation(2022M712645)Opening Fund of Key Laboratory of Enhanced Oil Recovery(Northeast Petroleum University),Ministry of Education(NEPU-EOR-2021-03).
文摘Severe well interference through complex fracture networks(CFNs)can be observed among multi-well pads in low permeability reservoirs.The well interference analysis between multi-fractured horizontal wells(MFHWs)is vitally important for reservoir effective development.Well interference has been historically investigated by pressure transient analysis,while it has shown that rate transient analysis has great potential in well interference diagnosis.However,the impact of complex fracture networks(CFNs)on rate transient behavior of parent well and child well in unconventional reservoirs is still not clear.To further investigate,this paper develops an integrated approach combining pressure and rate transient analysis for well interference diagnosis considering CFNs.To perform multi-well simulation considering CFNs,non-intrusive embedded discrete fracture model approach was applied for coupling fracture with reservoir models.The impact of CFN including natural fractures and frac-hits on pressure and rate transient behavior in multi-well system was investigated.On a logelog plot,interference flow and compound linear flow are two new flow regimes caused by nearby producers.When both NFs and frac-hits are present in the reservoir,frac-hits have a greater impact on well#1 which contains frac-hits,and NFs have greater impact on well#3 which does not have frac-hits.For all well producing circumstances,it might be challenging to see divergence during pseudosteady state flow brought on by frac-hits on the logelog plot.Besides,when NFs occur,reservoir depletion becomes noticeable in comparison to frac-hits in pressure distribution.Application of this integrated approach demonstrates that it works well to characterize the well interference among different multi-fractured horizontal wells in a well pad.Better reservoir evaluation can be acquired based on the new features observed in the novel model,demonstrating the practicability of the proposed approach.The findings of this study can help for better evaluating well interference degree in multi-well systems combing PTA and RTA,which can reduce the uncertainty and improve the accuracy of the well interference analysis based on both field pressure and rate data.
基金support of the National Natural Science Foundation of China(51604275)the Key Laboratory of Urban Under Ground Engineering of Ministry of Education(TUE2018-01)+1 种基金Yue Qi Young Scholar Project of China University of Mining&Technology,Beijingthe Fundamental Research Funds for the Central Universities(2016QL02).
文摘Natural fracture data from one of the Carboniferous shale masses in the eastern Qaidam Basin were used to establish a stochastic model of a discrete fracture network and to perform discrete element simulation research on the size efect and mechanical parameters of shale.Analytical solutions of fctitious joints in transversely isotropic media were derived,which made it possible for the proposed numerical model to simulate the bedding and natural fractures in shale masses.The results indicate that there are two main factors infuencing the representative elementary volume(REV)size of a shale mass.The frst and most decisive factor is the presence of natural fractures in the block itself.The second is the anisotropy ratio:the greater the anisotropy is,the larger the REV.The bedding angle has little infuence on the REV size,whereas it has a certain infuence on the mechanical parameters of the rock mass.When the bedding angle approaches the average orientation of the natural fractures,the mechanical parameters of the shale blocks decrease greatly.The REV representing the mechanical properties of the Carboniferous shale masses in the eastern Qaidam Basin were comprehensively identifed by considering the infuence of bedding and natural fractures.When the numerical model size is larger than the REV,the fractured rock mass discontinuities can be transformed into equivalent continuities,which provides a method for simulating shale with natural fractures and bedding to analyze the stability of a borehole wall in shale.
基金the financial support from the National Institute for Occupational Safety and Health(NIOSH)(200-2014-59613)for conducting this research
文摘Prediction of radon flux from the fractured zone of a propagating cave mine is basically associated with uncertainty and complexity. For instance, there is restricted access to these zones for field measure- ments, and it is quite difficult to replicate the complex nature of both natural and induced fractures in these zones in laboratory studies. Hence, a technique for predicting radon flux from a fractured rock using a discrete fracture network (DFN) model is developed to address these difficulties. This model quantifies the contribution of fractures to the total radon flux, and estimates the fracture density from a measured radon flux considering the effects of advection, diffusion, as well as radon generation and decay. Radon generation and decay are classified as reaction processes. Therefore, the equation solved is termed as the advection-diffusion-reaction equation (ADRE). Peclet number (Pe), a conventional dimensionless parameter that indicates the ratio of mass transport by advection to diffusion, is used to classify the transport regimes. The results show that the proposed model effectively predicts radon flux from a fractured rock. An increase in fracture density for a rock sample with uniformly distributed radon generation rate can elevate radon flux significantly compared with another rock sample with an equivalent increase in radon generation rate. In addition to Pe, two other independent dimensionless parameters (derived for radon transport through fractures) significantly affect radon dimensionless flux. Findings provide insight into radon transport through fractured rocks and can be used to improve radon control measures for proactive mitigation.
基金supported by the National Natural Science Foundation of China(Grant Nos.11872118,11627901)。
文摘The production efficiency of shale gas is affected by the interaction between hydraulic and natural fractures.This study presents a simulation of natural fractures in shale reservoirs,based on a discrete fracture network(DFN)method for hydraulic fracturing engineering.Fracture properties of the model are calculated from core fracture data,according to statistical mathematical analysis.The calculation results make full use of the quantitative information of core fracture orientation,density,opening and length,which constitute the direct and extensive data of mining engineering.The reliability and applicability of the model are analyzed with regard to model size and density,a calculation method for dominant size and density being proposed.Then,finite element analysis is applied to a hydraulic fracturing numerical simulation of a shale fractured reservoir in southeastern Chongqing.The hydraulic pressure distribution,fracture propagation,acoustic emission information and in situ stress changes during fracturing are analyzed.The results show the application of fracture statistics in fracture modeling and the influence of fracture distribution on hydraulic fracturing engineering.The present analysis may provide a reference for shale gas exploitation.
基金This work is supported by Open Fund Project“Study on Multiphase Flow Semi-Analytical Method for Horizontal Wells of Continental Shale Condensate Gas”of Sinopec Key Laboratory of Shale Oil/Gas Exploration and Production Technology.
文摘Well interference has become a common phenomenon with the increasing scale of horizontal well fracturing.Recent studies on well interference in horizontal wells do not properly reflect the physical model of the postfracturing well groups and the realistic fracturing process of infill wells.Establishing the correspondence between well interference causative factors and manifestations is of great significance for infill well deployment and secondary oil recovery.In this work,we develop a numerical model that considers low velocity non-Darcy seepage inshale reservoirs to study the inter-well interferencephenomenon that occurs in theSantanghufield,andconstruct an explicit hydraulic fracture and complex natural fracture network model with an embedded discrete fracture model,focusing on the effect of fracture network morphology on well interactions.The model also considers a multi-segment wellbore model to accommodate the effect of inter-well crossflow on wellbore tubular flow.The changes in formation pressure and water saturation during fracturing are performed by controlling the injection pressure and water injection rate.The result shows that the shape of the fracture network generated by the infill well with the old well determines the subsequent fluid and oil-increasing performance of the disturbed well.The synergistic production or competitive relationship formed by fractures with different connectivity between the two wells determines the positive and negative effects of the interference.The paper also investigates the adaptation study of water injection huff and puff schemes for well groups with different connectivity,and demonstrated a potential yield increase of up to 10.85%under adaptation injection.This method of identifying well interference based on the production dynamics of affected wells and the subsequent corresponding water injection method provides valuable references for the selection of secondary oil recovery measures.
基金Project supported by the National Natural Science Foundation of China(No.5140232)the National Science and Technology Major Project(No.2011ZX05038003)the China Postdoctoral Science Foundation(No.2014M561074)
文摘Based on the characteristics of fractures in naturally fractured reservoir and a discrete-fracture model, a fracture network numerical well test model is developed. Bottom hole pressure response curves and the pressure field are obtained by solving the model equations with the finite-element method. By analyzing bottom hole pressure curves and the fluid flow in the pressure field, seven flow stages can be recognized on the curves. An upscaling method is developed to compare with the dual-porosity model (DPM). The comparisons results show that the DPM overestimates the inter-porosity coefficient ), and the storage factor w. The analysis results show that fracture conductivity plays a leading role in the fluid flow. Matrix permeability influences the beginning time of flow from the matrix to fractures. Fractures density is another important parameter controlling the flow. The fracture linear flow is hidden under the large fracture density. The pressure propagation is slower in the direction of larger fracture density.
基金Supported by the National Science and Technology Major Project(2017ZX05063-005)Science and Technology Development Project of PetroChina Research Institute of Petroleum Exploration and Development(YGJ2019-12-04)。
文摘The generation method of three-dimensional fractal discrete fracture network(FDFN)based on multiplicative cascade process was developed.The complex multi-scale fracture system in shale after fracturing was characterized by coupling the artificial fracture model and the natural fracture model.Based on an assisted history matching(AHM)using multiple-proxy-based Markov chain Monte Carlo algorithm(MCMC),an embedded discrete fracture modeling(EDFM)incorporated with reservoir simulator was used to predict productivity of shale gas well.When using the natural fracture generation method,the distribution of natural fracture network can be controlled by fractal parameters,and the natural fracture network generated coupling with artificial fractures can characterize the complex system of different-scale fractures in shale after fracturing.The EDFM,with fewer grids and less computation time consumption,can characterize the attributes of natural fractures and artificial fractures flexibly,and simulate the details of mass transfer between matrix cells and fractures while reducing computation significantly.The combination of AMH and EDFM can lower the uncertainty of reservoir and fracture parameters,and realize effective inversion of key reservoir and fracture parameters and the productivity forecast of shale gas wells.Application demonstrates the results from the proposed productivity prediction model integrating FDFN,EDFM and AHM have high credibility.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.42102313 and 52104125)the Fundamental Research Funds for the Central Universities(Grant No.B240201094).
文摘In open pit mining,uncontrolled block instabilities have serious social,economic and regulatory consequences,such as casualties,disruption of operation and increased regulation difficulties.For this reason,bench face angle,as one of the controlling parameters associated with block instabilities,should be carefully designed for sustainable mining.This study introduces a discrete fracture network(DFN)-based probabilistic block theory approach for the fast design of the bench face angle.A major advantage is the explicit incorporation of discontinuity size and spatial distribution in the procedure of key blocks testing.The proposed approach was applied to a granite mine in China.First,DFN models were generated from a multi-step modeling procedure to simulate the complex structural characteristics of pit slopes.Then,a modified key blocks searching method was applied to the slope faces modeled,and a cumulative probability of failure was obtained for each sector.Finally,a bench face angle was determined commensurate with an acceptable risk level of stability.The simulation results have shown that the number of hazardous traces exposed on the slope face can be significantly reduced when the suggested bench face angle is adopted,indicating an extremely low risk of uncontrolled block instabilities.
基金funded by the National Natural Science s of China(No.41972264)the Key R&D Project of Zhejiang Province(No.2021C03159)the Field Scientific Observation&Research Station of Geological Hazard in Zhejiang,Ministry of Natural Resources,China(No.ZJDZGCZ-2021)。
文摘Since natural fractures are often non-equidimensional,the circular disc model still has great limitations.By contrast,the elliptical disc model is more applicable to representing natural fractures,especially for slender ones.This paper developed a universal elliptical disc(UED)model by incorporating the center point,size,and azimuth of fractures as variables.Specifically,with respect to the azimuth of elliptical fractures in three-dimensional(3D)space,we proposed a paradigm to construct its probability density function(PDF)by coupling the orientation and rotation angle of long axis based on three coordinate transformations.To illustrate the construction process of the PDF of the fracture azimuth,we took the orientation following the Fisher distribution and the rotation angle following Von Mises distribution as an example.A rock slope is used to show the use of the developed UED model,and the 3D DFNs for the slope rock mass are generated by Monte Carlo simulation.In addition,the DFNs for the rock mass are also generated based on the existing circular disc model and non-universal elliptical disc model.The comparison results from the three models clearly illustrate the superiority of the UED model over the existing circular and non-universal elliptical disc models.
基金financial support from the projects of the National Natural Science Foundation of China(NSFC)(Grant Nos.51809259,51774056,and 51774095)the CAS Pioneer Hundred Talents Program in China。
文摘It is well known that the complicated channeling of fluid flow and heat transfer is strongly related with the intricate natural fracture system.However,it is still challenging to set up the fracture network model which is strong heterogeneous.Compared with other methods(e.g.equivalent continuum model(ECM),discrete fracture model(DFM),and ECM-DFM),the fracture flow module in the COMSOL Multiphysics simulator is powerful in definition of fractures as the inner flow boundary existing in the porous media.Thus it is selected to simulate the fluid flow and heat transfer in the geothermal-developed fractured granite of Sanguliu area located at Liaodong Peninsula,Eastern China.The natural faults/fractures based on field investigation combined with the discrete fracture network(DFN)generated by the MATLAB are used to represent the two-dimensional geological model.Numerical results show that early thermal breakthrough occurs at the production well caused by quick flow of cold water along the highly connected fractures.Suitable hydraulic fracturing treatments with proper injection rates,locations,etc.can efficiently hinder the thermal breakthrough time in the natural fracture system.Large well spacing helps the long-term operation of geothermal production,but it is highly dependent on the geometrical morphology of the fracture network.The enhancement of reservoir properties at the near-well regions can also increase the geothermal production efficiency.The results in this study can provide references to achieve a sustainable geothermal exploitation in fractured granitic geothermal reservoirs or hot dry rocks at depth.
基金supported by the IMSRN French Company through a CIFRE grant No. 2012/0710CSIRO Energy Flagship+1 种基金QCAT in AustraliaThe laboratory 3SR is part of the Lab Ex Tec 21 (Investissements d’Avenir e grant agreement No. ANR-11-LABX-0030)
文摘Analysis and prediction of structural instabilities in open pit mines are an important design and operational consideration for ensuring safety and productivity of the operation. Unstable wedges and blocks occurring at the surface of the pit walls may be identified through three-dimensional(3D) image analysis combined with the discrete fracture network(DFN) approach. Kinematic analysis based on polyhedral modelling can be used for first pass analysis but cannot capture composite failure mechanisms involving both structurally controlled and rock mass progressive failures. A methodology is proposed in this paper to overcome such limitations by coupling DFN models with geomechanical simulations based on the discrete element method(DEM). Further, high resolution photogrammetric data are used to identify valid model scenarios. An identified wedge failure that occurred in an Australian coal mine is used to validate the methodology. In this particular case, the failure surface was induced as a result of the rock mass progressive failure that developed from the toe of the structure inside the intact rock matrix. Analysis has been undertaken to determine in what scenarios the measured and predicted failure surfaces can be used to calibrate strength parameters in the model.
基金NSERC (Natural Sciences and Engineering Research Council of Canada) for the financial support provided to this research through a Collaborative Research Development grant (Grant No. 11R74149 Mine-to-Mill Integration for Block Cave Mines)
文摘Discrete fracture network(DFN) models have been proved to be effective tools for the characterisation of rock masses by using statistical distributions to generate realistic three-dimensional(3 D) representations of a natural fracture network. The quality of DFN modelling relies on the quality of the field data and their interpretation. In this context, advancements in remote data acquisition have now made it possible to acquire high-quality data potentially not accessible by conventional scanline and window mapping. This paper presents a comparison between aggregate and disaggregate approaches to define fracture sets, and their role with respect to the definition of key input parameters required to generate DFN models. The focal point of the discussion is the characterisation of in situ block size distribution(IBSD) using DFN methods. An application of IBSD is the assessment of rock mass quality through rock mass classification systems such as geological strength index(GSI). As DFN models are becoming an almost integral part of many geotechnical and mining engineering problems, the authors present a method whereby realistic representation of 3 D fracture networks and block size analysis are used to estimate GSI ratings, with emphasis on the limitations that exist in rock engineering design when assigning a unique GSI value to spatially variable rock masses.
基金supported by the National Natural Science Foundation of China(Nos.52274038,5203401042174143)+1 种基金the Taishan Scholars Project(No.tsqnz20221140)the Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Southwest Petroleum University)of China(No.PLN2020-5)。
文摘This paper presents an integrated study from fracture propagation modeling to gas flow modeling and a correlation analysis to explore the key controlling factors of intensive volume fracturing.The fracture propagation model takes into account the interaction between hydraulic fracture and natural fracture by means of the displacement discontinuity method(DDM)and the Picard iterative method.The shale gas flow considers multiple transport mechanisms,and the flow in the fracture network is handled by the embedded discrete fracture model(EDFM).A series of numerical simulations are conducted to analyze the effects of the cluster number,stage spacing,stress difference coefficient,and natural fracture distribution on the stimulated fracture area,fractal dimension,and cumulative gas production,and their correlation coefficients are obtained.The results show that the most influential factors to the stimulated fracture area are the stress difference ratio,stage spacing,and natural fracture density,while those to the cumulative gas production are the stress difference ratio,natural fracture density,and cluster number.This indicates that the stress condition dominates the gas production,and employing intensive volume fracturing(by properly increasing the cluster number)is beneficial for improving the final cumulative gas production.
文摘Fluid flow in fractured media has been studied for decades and received considerable attention in the oil and gas industry because of the high productivity of naturally fractured reservoirs.Due to formation complexity and reservoir heterogeneity,characterizing fluid flow with an appropriate reservoir model presents a challenging task that differs relatively from homogeneous conventional reservoirs in many aspects of view,including geological,petrophysical,production,and economics.In most fractured reservoirs,fracture networks create complex pathways that affect hydrocarbon flow,well performance,hence reservoir characterization.A better and comprehensive understanding of the available reservoir modeling approaches is much needed to accurately characterize fluid flow behavior in NFRs.Therefore,in this paper,a perspective review of the available modeling approaches was presented for fluid flow characterization in naturally fractured medium.Modeling methods were evaluated in terms of their description,application,advantages,and disadvantages.This study has also included the applications of these reservoir models in fluid flow characterizing studies and governing equations for fluid flow.Dual continuum models were proved to be better than single continuum models in the presence of large scale fractures.In comparison,discrete models were more appropriate for reservoirs that contain a smaller number of fractures.However,hybrid modeling was the best method to provide accurate and scalable fluid flow modeling.It is our understanding that this paper will bridge the gap between the fundamental understanding and application of NFRs modeling approaches and serve as a useful reference for engineers and researchers for present and future applications.