期刊文献+
共找到53篇文章
< 1 2 3 >
每页显示 20 50 100
Discontinuity development patterns and the challenges for 3D discrete fracture network modeling on complicated exposed rock surfaces 被引量:1
1
作者 Wen Zhang Ming Wei +8 位作者 Ying Zhang Tengyue Li Qing Wang Chen Cao Chun Zhu Zhengwei Li Zhenbang Nie Shuonan Wang Han Yin 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2154-2171,共18页
Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This st... Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This study presents a systematic outcrop research of fracture pattern variations in a complicated rock slope,and the qualitative and quantitative study of the complex phenomena impact on threedimensional(3D)discrete fracture network(DFN)modeling.As the studies of the outcrop fracture pattern have been so far focused on local variations,thus,we put forward a statistical analysis of global variations.The entire outcrop is partitioned into several subzones,and the subzone-scale variability of fracture geometric properties is analyzed(including the orientation,the density,and the trace length).The results reveal significant variations in fracture characteristics(such as the concentrative degree,the average orientation,the density,and the trace length)among different subzones.Moreover,the density of fracture sets,which is approximately parallel to the slope surface,exhibits a notably higher value compared to other fracture sets across all subzones.To improve the accuracy of the DFN modeling,the effects of three common phenomena resulting from vegetation and rockfalls are qualitatively analyzed and the corresponding quantitative data processing solutions are proposed.Subsequently,the 3D fracture geometric parameters are determined for different areas of the high-steep rock slope in terms of the subzone dimensions.The results show significant variations in the same set of 3D fracture parameters across different regions with density differing by up to tenfold and mean trace length exhibiting differences of 3e4 times.The study results present precise geological structural information,improve modeling accuracy,and provide practical solutions for addressing complex outcrop issues. 展开更多
关键词 Complicated exposed rock surfaces Discontinuity characteristic variation Three-dimensional discrete fracture network modeling Outcrop study Vegetation cover and rockfalls
下载PDF
Evaluating the mechanical properties of anisotropic shale containing bedding and natural fractures with discrete element modeling 被引量:6
2
作者 Yingjie Li Lihong Song +2 位作者 Yuanjun Tang Jianping Zuo Dongjie Xue 《International Journal of Coal Science & Technology》 EI CAS CSCD 2022年第2期91-106,共16页
Natural fracture data from one of the Carboniferous shale masses in the eastern Qaidam Basin were used to establish a stochastic model of a discrete fracture network and to perform discrete element simulation research... Natural fracture data from one of the Carboniferous shale masses in the eastern Qaidam Basin were used to establish a stochastic model of a discrete fracture network and to perform discrete element simulation research on the size efect and mechanical parameters of shale.Analytical solutions of fctitious joints in transversely isotropic media were derived,which made it possible for the proposed numerical model to simulate the bedding and natural fractures in shale masses.The results indicate that there are two main factors infuencing the representative elementary volume(REV)size of a shale mass.The frst and most decisive factor is the presence of natural fractures in the block itself.The second is the anisotropy ratio:the greater the anisotropy is,the larger the REV.The bedding angle has little infuence on the REV size,whereas it has a certain infuence on the mechanical parameters of the rock mass.When the bedding angle approaches the average orientation of the natural fractures,the mechanical parameters of the shale blocks decrease greatly.The REV representing the mechanical properties of the Carboniferous shale masses in the eastern Qaidam Basin were comprehensively identifed by considering the infuence of bedding and natural fractures.When the numerical model size is larger than the REV,the fractured rock mass discontinuities can be transformed into equivalent continuities,which provides a method for simulating shale with natural fractures and bedding to analyze the stability of a borehole wall in shale. 展开更多
关键词 SHALE discrete fracture network Natural fracture ANISOTROPY discrete element modeling
下载PDF
Development of an improved three-dimensional rough discrete fracture network model:Method and application
3
作者 Peitao Wang Chi Ma +3 位作者 Bo Zhang Qi Gou Wenhui Tan Meifeng Cai 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第12期1469-1485,共17页
Structure plane is one of the important factors affecting the stability and failure mode of rock mass engineering.Rock mass structure characterization is the basic work of rock mechanics research and the important con... Structure plane is one of the important factors affecting the stability and failure mode of rock mass engineering.Rock mass structure characterization is the basic work of rock mechanics research and the important content of numerical simulation.A new 3-dimensional rough discrete fracture network(RDFN3D)model and its modeling method based on the Weierstrass-Mandelbrot(W-M)function were presented in this paper.The RDFN3D model,which improves and unifies the modelling methods for the complex structural planes,has been realized.The influence of fractal dimension,amplitude,and surface precision on the modeling parameters of RDFN3D was discussed.The reasonable W-M parameters suitable for the roughness coefficient of JRC were proposed,and the relationship between the mathematical model and the joint characterization was established.The RDFN3D together with the smooth 3-dimensional discrete fracture network(DFN3D)models were successfully exported to the drawing exchange format,which will provide a wide application in numerous numerical simulation codes including both the continuous and discontinuous methods.The numerical models were discussed using the COMSOL Multiphysics code and the 3-dimensional particle flow code,respectively.The reliability of the RDFN3D model was preliminarily discussed and analyzed.The roughness and spatial connectivity of the fracture networks have a dominant effect on the fluid flow patterns.The research results can provide a new geological model and analysis model for numerical simulation and engineering analysis of jointed rock mass. 展开更多
关键词 Jointed rock mass discrete fracture network ROUGHNESS Weierstrass-Mandelbrot function 3D modeling Rock mechanics
下载PDF
Using fracture-based continuum modeling of coupled geomechanical-hydrological processes for numerical simulation of hydraulic fracturing
4
作者 Goodluck I.Ofoegbu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1582-1599,共18页
This paper describes numerical simulation of hydraulic fracturing using fracture-based continuum modeling(FBCM)of coupled geomechanical-hydrological processes to evaluate a technique for high-density fracturing and fr... This paper describes numerical simulation of hydraulic fracturing using fracture-based continuum modeling(FBCM)of coupled geomechanical-hydrological processes to evaluate a technique for high-density fracturing and fracture caging.The simulations are innovative because of modeling discrete fractures explicitly in continuum analysis.A key advantage of FBCM is that fracture initiation and propagation are modeled explicitly without changing the domain grid(i.e.no re-meshing).Further,multiple realizations of a preexisting fracture distribution can be analyzed using the same domain grid.The simulated hydraulic fracturing technique consists of pressurizing multiple wells simultaneously:initially without permeating fluids into the rock,to seed fractures uniformly and at high density in the wall rock of the wells;followed by fluid injection to propagate the seeded fracture density hydraulically.FBCM combines the ease of continuum modeling with the potential accuracy of modeling discrete fractures and fracturing explicitly.Fractures are modeled as piecewise planar based on intersections with domain elements;fracture geometry stored as continuum properties is used to calculate parameters needed to model individual fractures;and rock behavior is modeled through tensorial aggregation of the behavior of discrete fractures and unfractured rock.Simulations are presented for previously unfractured rock and for rock with preexisting fractures of horizontal,shallow-dipping,steeply dipping,or vertical orientation.Simulations of a single-well model are used to determine the pattern and spacing for a multiple-well design.The results illustrate high-density fracturing and fracture caging through simultaneous fluid injection in multiple wells:for previously unfractured rock or rock with preexisting shallow-dipping or horizontal fractures,and in situ vertical compressive stress greater than horizontal.If preexisting fractures are steeply dipping or vertical,and considering the same in situ stress condition,well pressurization without fluid permeation appears to be the only practical way to induce new fractures and contain fracturing within the target domain. 展开更多
关键词 discrete fracture Fracture-based continuum modeling Fracture caging High-density fracturing Hydraulic fracturing Preexisting fracture
下载PDF
CO_(2)flooding in shale oil reservoir with radial borehole fracturing for CO_(2)storage and enhanced oil recovery
5
作者 Jia-Cheng Dai Tian-Yu Wang +3 位作者 Jin-Tao Weng Kang-Jian Tian Li-Ying Zhu Gen-Sheng Li 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期519-534,共16页
This study introduces a novel method integrating CO_(2)flooding with radial borehole fracturing for enhanced oil recovery and CO_(2)underground storage,a solution to the limited vertical stimulation reservoir volume i... This study introduces a novel method integrating CO_(2)flooding with radial borehole fracturing for enhanced oil recovery and CO_(2)underground storage,a solution to the limited vertical stimulation reservoir volume in horizontal well fracturing.A numerical model is established to investigate the production rate,reservoir pressure field,and CO_(2)saturation distribution corresponding to changing time of CO_(2)flooding with radial borehole fracturing.A sensitivity analysis on the influence of CO_(2)injection location,layer spacing,pressure difference,borehole number,and hydraulic fractures on oil production and CO_(2)storage is conducted.The CO_(2)flooding process is divided into four stages.Reductions in layer spacing will significantly improve oil production rate and gas storage capacity.However,serious gas channeling can occur when the spacing is lower than 20 m.Increasing the pressure difference between the producer and injector,the borehole number,the hydraulic fracture height,and the fracture width can also increase the oil production rate and gas storage rate.Sensitivity analysis shows that layer spacing and fracture height greatly influence gas storage and oil production.Research outcomes are expected to provide a theoretical basis for the efficient development of shale oil reservoirs in the vertical direction. 展开更多
关键词 Shale oil Radial borehole fracturing Embedded discrete fracture model Enhanced oil recovery Carbon storage
下载PDF
Development of a DFN-based probabilistic block theory approach for bench face angle design in open pit mining
6
作者 Jianhua Yan Xiansen Xing +4 位作者 Zhihai Li Weida Ni Liuyuan Zhao Chun Zhu Yuanyuan He 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期3047-3062,共16页
In open pit mining,uncontrolled block instabilities have serious social,economic and regulatory consequences,such as casualties,disruption of operation and increased regulation difficulties.For this reason,bench face ... In open pit mining,uncontrolled block instabilities have serious social,economic and regulatory consequences,such as casualties,disruption of operation and increased regulation difficulties.For this reason,bench face angle,as one of the controlling parameters associated with block instabilities,should be carefully designed for sustainable mining.This study introduces a discrete fracture network(DFN)-based probabilistic block theory approach for the fast design of the bench face angle.A major advantage is the explicit incorporation of discontinuity size and spatial distribution in the procedure of key blocks testing.The proposed approach was applied to a granite mine in China.First,DFN models were generated from a multi-step modeling procedure to simulate the complex structural characteristics of pit slopes.Then,a modified key blocks searching method was applied to the slope faces modeled,and a cumulative probability of failure was obtained for each sector.Finally,a bench face angle was determined commensurate with an acceptable risk level of stability.The simulation results have shown that the number of hazardous traces exposed on the slope face can be significantly reduced when the suggested bench face angle is adopted,indicating an extremely low risk of uncontrolled block instabilities. 展开更多
关键词 Open pit mine Bench face angle Block theory Probabilistic approach discrete fracture network modeling Fractured rock slope
下载PDF
Production induced fracture closure of deep shale gas well under thermo-hydro-mechanical conditions
7
作者 Shi-Ming Wei Yang Xia +4 位作者 Yan Jin Xu-Yang Guo Jing-Yu Zi Kai-Xuan Qiu Si-Yuan Chen 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1796-1813,共18页
Deep shale gas reservoirs have geological characteristics of high temperature,high pressure,high stress,and inferior ability to pass through fluids.The multi-stage fractured horizontal well is the key to exploiting th... Deep shale gas reservoirs have geological characteristics of high temperature,high pressure,high stress,and inferior ability to pass through fluids.The multi-stage fractured horizontal well is the key to exploiting the deep shale gas reservoir.However,during the production process,the effectiveness of the hydraulic fracture network decreases with the closure of fractures,which accelerates the decline of shale gas production.In this paper,we addressed the problems of unclear fracture closure mechanisms and low accuracy of shale gas production prediction during deep shale gas production.Then we established the fluid—solid—heat coupled model coupling the deformation and fluid flow among the fracture surface,proppant and the shale matrix.When the fluid—solid—heat coupled model was applied to the fracture network,it was well solved by our numerical method named discontinuous discrete fracture method.Compared with the conventional discrete fracture method,the discontinuous discrete fracture method can describe the three-dimensional morphology of the fracture while considering the effect of the change of fracture surface permeation coefficient on the coupled fracture—matrix flow and describing the displacement discontinuity across the fracture.Numerical simulations revealed that the degree of fracture closure increases as the production time proceeds,and the degree of closure of the secondary fractures is higher than that of the primary fractures.Shale creep and proppant embedment both increase the degree of fracture closure.The reduction in fracture surface permeability due to proppant embedment reduces the rate of fluid transfer between matrix and fracture,which has often been overlooked in the past.However,it significantly impacts shale gas production,with calculations showing a 24.7%cumulative three-year yield reduction.This study is helpful to understand the mechanism of hydraulic fracture closure.Therefore,it provides the theoretical guidance for maintaining the long-term effectiveness of hydraulic fractures. 展开更多
关键词 Shalegas Fracture closure Fluid-solid-heat coupling Discontinuous discrete fracture
下载PDF
Borehole stability in naturally fractured rocks with drilling mud intrusion and associated fracture strength weakening:A coupled DFN-DEM approach
8
作者 Yaoran Wei Yongcun Feng +4 位作者 Zhenlai Tan Tianyu Yang Xiaorong Li Zhiyue Dai Jingen Deng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1565-1581,共17页
Borehole instability in naturally fractured rocks poses significant challenges to drilling.Drilling mud invades the surrounding formations through natural fractures under the difference between the wellbore pressure(P... Borehole instability in naturally fractured rocks poses significant challenges to drilling.Drilling mud invades the surrounding formations through natural fractures under the difference between the wellbore pressure(P w)and pore pressure(P p)during drilling,which may cause wellbore instability.However,the weakening of fracture strength due to mud intrusion is not considered in most existing borehole stability analyses,which may yield significant errors and misleading predictions.In addition,only limited factors were analyzed,and the fracture distribution was oversimplified.In this paper,the impacts of mud intrusion and associated fracture strength weakening on borehole stability in fractured rocks under both isotropic and anisotropic stress states are investigated using a coupled DEM(distinct element method)and DFN(discrete fracture network)method.It provides estimates of the effect of fracture strength weakening,wellbore pressure,in situ stresses,and sealing efficiency on borehole stability.The results show that mud intrusion and weakening of fracture strength can damage the borehole.This is demonstrated by the large displacement around the borehole,shear displacement on natural fractures,and the generation of fracture at shear limit.Mud intrusion reduces the shear strength of the fracture surface and leads to shear failure,which explains that the increase in mud weight may worsen borehole stability during overbalanced drilling in fractured formations.A higher in situ stress anisotropy exerts a significant influence on the mechanism of shear failure distribution around the wellbore.Moreover,the effect of sealing natural fractures on maintaining borehole stability is verified in this study,and the increase in sealing efficiency reduces the radial invasion distance of drilling mud.This study provides a directly quantitative prediction method of borehole instability in naturally fractured formations,which can consider the discrete fracture network,mud intrusion,and associated weakening of fracture strength.The information provided by the numerical approach(e.g.displacement around the borehole,shear displacement on fracture,and fracture at shear limit)is helpful for managing wellbore stability and designing wellbore-strengthening operations. 展开更多
关键词 Borehole stability Naturally fractured rocks Weakening of fracture strength discrete fracture network Distinct element method
下载PDF
A three-dimensional feature extraction-based method for coal cleat characterization using X-ray μCT and its application to a Bowen Basin coal specimen
9
作者 Yulai Zhang Matthew Tsang +4 位作者 Mark Knackstedt Michael Turner Shane Latham Euan Macaulay Rhys Pitchers 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期153-166,共14页
Cleats are the dominant micro-fracture network controlling the macro-mechanical behavior of coal.Improved understanding of the spatial characteristics of cleat networks is therefore important to the coal mining indust... Cleats are the dominant micro-fracture network controlling the macro-mechanical behavior of coal.Improved understanding of the spatial characteristics of cleat networks is therefore important to the coal mining industry.Discrete fracture networks(DFNs)are increasingly used in engineering analyses to spatially model fractures at various scales.The reliability of coal DFNs largely depends on the confidence in the input cleat statistics.Estimates of these parameters can be made from image-based three-dimensional(3D)characterization of coal cleats using X-ray micro-computed tomography(m CT).One key step in this process,after cleat extraction,is the separation of individual cleats,without which the cleats are a connected network and statistics for different cleat sets cannot be measured.In this paper,a feature extraction-based image processing method is introduced to identify and separate distinct cleat groups from 3D X-ray m CT images.Kernels(filters)representing explicit cleat features of coal are built and cleat separation is successfully achieved by convolutional operations on 3D coal images.The new method is applied to a coal specimen with 80 mm in diameter and 100 mm in length acquired from an Anglo American Steelmaking Coal mine in the Bowen Basin,Queensland,Australia.It is demonstrated that the new method produces reliable cleat separation capable of defining individual cleats and preserving 3D topology after separation.Bedding-parallel fractures are also identified and separated,which has his-torically been challenging to delineate and rarely reported.A variety of cleat/fracture statistics is measured which not only can quantitatively characterize the cleat/fracture system but also can be used for DFN modeling.Finally,variability and heterogeneity with respect to the core axis are investigated.Significant heterogeneity is observed and suggests that the representative elementary volume(REV)of the cleat groups for engineering purposes may be a complex problem requiring careful consideration. 展开更多
关键词 Cleat separation Cleat statistics Feature extraction discrete fracture network(DFN)modeling
下载PDF
High-Precision Flow Numerical Simulation and Productivity Evaluation of Shale Oil Considering Stress Sensitivity
10
作者 Mingjing Lu Qin Qian +3 位作者 Anhai Zhong Feng Yang Wenjun He Min Li 《Fluid Dynamics & Materials Processing》 EI 2024年第10期2281-2300,共20页
Continental shale oil reservoirs,characterized by numerous bedding planes and micro-nano scale pores,feature significantly higher stress sensitivity compared to other types of reservoirs.However,research on suitable s... Continental shale oil reservoirs,characterized by numerous bedding planes and micro-nano scale pores,feature significantly higher stress sensitivity compared to other types of reservoirs.However,research on suitable stress sensitivity characterization models is still limited.In this study,three commonly used stress sensitivity models for shale oil reservoirs were considered,and experiments on representative core samples were conducted.By fitting and comparing the data,the“exponential model”was identified as a characterization model that accurately represents stress sensitivity in continental shale oil reservoirs.To validate the accuracy of the model,a two-phase seepage mathematical model for shale oil reservoirs coupled with the exponential model was introduced.The model was discretely solved using the finite volume method,and its accuracy was verified through the commercial simulator CMG.The study evaluated the productivity of a typical horizontal well under different engineering,geological,and fracture conditions.The results indicate that considering stress sensitivity leads to a 13.57%reduction in production for the same matrix permeability.Additionally,as the fracture half-length and the number of fractures increase,and the bottomhole flowing pressure decreases,the reservoir stress sensitivity becomes higher. 展开更多
关键词 Shale oil horizontal wells Embedded discrete Fracture Model(EDFM) stress sensitivity numerical simulation sensitivity analysis
下载PDF
Mesh generation and optimization from digital rock fractures based on neural style transfer
11
作者 Mengsu Hu Jonny Rutqvist Carl I.Steefel 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第4期912-919,共8页
The complex geometric features of subsurface fractures at different scales makes mesh generation challenging and/or expensive.In this paper,we make use of neural style transfer(NST),a machine learning technique,to gen... The complex geometric features of subsurface fractures at different scales makes mesh generation challenging and/or expensive.In this paper,we make use of neural style transfer(NST),a machine learning technique,to generate mesh from rock fracture images.In this new approach,we use digital rock fractures at multiple scales that represent’content’and define uniformly shaped and sized triangles to represent’style’.The 19-layer convolutional neural network(CNN)learns the content from the rock image,including lower-level features(such as edges and corners)and higher-level features(such as rock,fractures,or other mineral fillings),and learns the style from the triangular grids.By optimizing the cost function to achieve approximation to represent both the content and the style,numerical meshes can be generated and optimized.We utilize the NST to generate meshes for rough fractures with asperities formed in rock,a network of fractures embedded in rock,and a sand aggregate with multiple grains.Based on the examples,we show that this new NST technique can make mesh generation and optimization much more efficient by achieving a good balance between the density of the mesh and the presentation of the geometric features.Finally,we discuss future applications of this approach and perspectives of applying machine learning to bridge the gaps between numerical modeling and experiments. 展开更多
关键词 Convolutional neural network(CNN) Neural style transfer(NST) Digital rock discrete fractures Discontinuum asperities Grain aggregates Mesh generation and optimization
下载PDF
A universal elliptical disc(UED)model to represent natural rock fractures 被引量:7
12
作者 Jun Zheng Jichao Guo +3 位作者 Jiongchao Wang Honglei Sun Jianhui Deng Qing Lv 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第2期261-270,共10页
Since natural fractures are often non-equidimensional,the circular disc model still has great limitations.By contrast,the elliptical disc model is more applicable to representing natural fractures,especially for slend... Since natural fractures are often non-equidimensional,the circular disc model still has great limitations.By contrast,the elliptical disc model is more applicable to representing natural fractures,especially for slender ones.This paper developed a universal elliptical disc(UED)model by incorporating the center point,size,and azimuth of fractures as variables.Specifically,with respect to the azimuth of elliptical fractures in three-dimensional(3D)space,we proposed a paradigm to construct its probability density function(PDF)by coupling the orientation and rotation angle of long axis based on three coordinate transformations.To illustrate the construction process of the PDF of the fracture azimuth,we took the orientation following the Fisher distribution and the rotation angle following Von Mises distribution as an example.A rock slope is used to show the use of the developed UED model,and the 3D DFNs for the slope rock mass are generated by Monte Carlo simulation.In addition,the DFNs for the rock mass are also generated based on the existing circular disc model and non-universal elliptical disc model.The comparison results from the three models clearly illustrate the superiority of the UED model over the existing circular and non-universal elliptical disc models. 展开更多
关键词 discrete fracture networks Rock mass DISCONTINUITY Elliptical disc model Fisher distribution Monte Carlo simulation
下载PDF
Analysis on intersections between fractures by parallel computation 被引量:10
13
作者 Zhiyu Li Mingyu Wang +1 位作者 Jianhui Zhao Xiaohui Qiao 《International Journal of Coal Science & Technology》 EI CAS 2014年第3期356-363,共8页
The discrete fracture network model is a powerful tool for fractured rock mass fluid flow simulations and supports safety assessments of coal mine hazards such as water inrush.Intersection analysis,which identifies al... The discrete fracture network model is a powerful tool for fractured rock mass fluid flow simulations and supports safety assessments of coal mine hazards such as water inrush.Intersection analysis,which identifies all pairs of intersected fractures(the basic components composing the connectivity of a network),is one of its crucial procedures.This paper attempts to improve intersection analysis through parallel computing.Considering a seamless interfacing with other procedures in modeling,two algorithms are designed and presented,of which one is a completely independent parallel procedure with some redundant computations and the other is an optimized version with reduced redundancy.A numerical study indicates that both of the algorithms are practical and can significantly improve the computational performance of intersection analysis for large-scale simulations.Moreover,the preferred application conditions for the two algorithms are also discussed. 展开更多
关键词 Fracture intersections discrete fracture network-Intersection analysis Parallel computing
下载PDF
Fractured reservoir modeling by discrete fracture network and seismic modeling in the Tarim Basin,China 被引量:4
14
作者 Sam Zandong Sun Zhou Xinyuan +3 位作者 Yang Haijun Wang Yueying WangDi Liu Zhishui 《Petroleum Science》 SCIE CAS CSCD 2011年第4期433-445,共13页
Fractured reservoirs are an important target for oil and gas exploration in the Tarim Basin and the prediction of this type of reservoir is challenging.Due to the complicated fracture system in the Tarim Basin,the con... Fractured reservoirs are an important target for oil and gas exploration in the Tarim Basin and the prediction of this type of reservoir is challenging.Due to the complicated fracture system in the Tarim Basin,the conventional AVO inversion method based on HTI theory to predict fracture development will result in some errors.Thus,an integrated research concept for fractured reservoir prediction is put forward in this paper.Seismic modeling plays a bridging role in this concept,and the establishment of an anisotropic fracture model by Discrete Fracture Network (DFN) is the key part.Because the fracture system in the Tarim Basin shows complex anisotropic characteristics,it is vital to build an effective anisotropic model.Based on geological,well logging and seismic data,an effective anisotropic model of complex fracture systems can be set up with the DFN method.The effective elastic coefficients,and the input data for seismic modeling can be calculated.Then seismic modeling based on this model is performed,and the seismic response characteristics are analyzed.The modeling results can be used in the following AVO inversion for fracture detection. 展开更多
关键词 Fractured reservoir discrete Fracture Network (DFN) equivalent medium seismic modeling azimuth-angle gathers
下载PDF
Characterizing the influence of stress-induced microcracks on the laboratory strength and fracture development in brittle rocks using a finite-discrete element method-micro discrete fracture network FDEM-μDFN approach 被引量:6
15
作者 Pooya Hamdi Doug Stead Davide Elmo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第6期609-625,共17页
Heterogeneity is an inherent component of rock and may be present in different forms including mineralheterogeneity, geometrical heterogeneity, weak grain boundaries and micro-defects. Microcracks areusually observed ... Heterogeneity is an inherent component of rock and may be present in different forms including mineralheterogeneity, geometrical heterogeneity, weak grain boundaries and micro-defects. Microcracks areusually observed in crystalline rocks in two forms: natural and stress-induced; the amount of stressinducedmicrocracking increases with depth and in-situ stress. Laboratory results indicate that thephysical properties of rocks such as strength, deformability, P-wave velocity and permeability areinfluenced by increase in microcrack intensity. In this study, the finite-discrete element method (FDEM)is used to model microcrack heterogeneity by introducing into a model sample sets of microcracks usingthe proposed micro discrete fracture network (mDFN) approach. The characteristics of the microcracksrequired to create mDFN models are obtained through image analyses of thin sections of Lac du Bonnetgranite adopted from published literature. A suite of two-dimensional laboratory tests including uniaxial,triaxial compression and Brazilian tests is simulated and the results are compared with laboratory data.The FDEM-mDFN models indicate that micro-heterogeneity has a profound influence on both the mechanicalbehavior and resultant fracture pattern. An increase in the microcrack intensity leads to areduction in the strength of the sample and changes the character of the rock strength envelope. Spallingand axial splitting dominate the failure mode at low confinement while shear failure is the dominantfailure mode at high confinement. Numerical results from simulated compression tests show thatmicrocracking reduces the cohesive component of strength alone, and the frictional strength componentremains unaffected. Results from simulated Brazilian tests show that the tensile strength is influenced bythe presence of microcracks, with a reduction in tensile strength as microcrack intensity increases. Theimportance of microcrack heterogeneity in reproducing a bi-linear or S-shape failure envelope and itseffects on the mechanisms leading to spalling damage near an underground opening are also discussed. 展开更多
关键词 Finite-discrete element method(FDEM) Micro discrete fracture network(μDFN) Brittle fracture
下载PDF
A discrete model for prediction of radon flux from fractured rocks 被引量:4
16
作者 K.M. Ajayi K. Shahbazi +1 位作者 R Tukkaraja K. Katzenstein 《Journal of Rock Mechanics and Geotechnical Engineering》 CSCD 2018年第5期879-892,共14页
Prediction of radon flux from the fractured zone of a propagating cave mine is basically associated with uncertainty and complexity. For instance, there is restricted access to these zones for field measure- ments, an... Prediction of radon flux from the fractured zone of a propagating cave mine is basically associated with uncertainty and complexity. For instance, there is restricted access to these zones for field measure- ments, and it is quite difficult to replicate the complex nature of both natural and induced fractures in these zones in laboratory studies. Hence, a technique for predicting radon flux from a fractured rock using a discrete fracture network (DFN) model is developed to address these difficulties. This model quantifies the contribution of fractures to the total radon flux, and estimates the fracture density from a measured radon flux considering the effects of advection, diffusion, as well as radon generation and decay. Radon generation and decay are classified as reaction processes. Therefore, the equation solved is termed as the advection-diffusion-reaction equation (ADRE). Peclet number (Pe), a conventional dimensionless parameter that indicates the ratio of mass transport by advection to diffusion, is used to classify the transport regimes. The results show that the proposed model effectively predicts radon flux from a fractured rock. An increase in fracture density for a rock sample with uniformly distributed radon generation rate can elevate radon flux significantly compared with another rock sample with an equivalent increase in radon generation rate. In addition to Pe, two other independent dimensionless parameters (derived for radon transport through fractures) significantly affect radon dimensionless flux. Findings provide insight into radon transport through fractured rocks and can be used to improve radon control measures for proactive mitigation. 展开更多
关键词 Radon mass flux Radon dimensionless flux Stochastic model discrete fracture network (DFN) Caving mining method Fractured rocks
下载PDF
A review of discrete modeling techniques for fracturing processes in discontinuous rock masses 被引量:62
17
作者 A.Lisjak G.Grasselli 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第4期301-314,共14页
The goal of this review paper is to provide a summary of selected discrete element and hybrid finitediscrete element modeling techniques that have emerged in the field of rock mechanics as simulation tools for fractur... The goal of this review paper is to provide a summary of selected discrete element and hybrid finitediscrete element modeling techniques that have emerged in the field of rock mechanics as simulation tools for fracturing processes in rocks and rock masses. The fundamental principles of each computer code are illustrated with particular emphasis on the approach specifically adopted to simulate fracture nucleation and propagation and to account for the presence of rock mass discontinuities. This description is accompanied by a brief review of application studies focusing on laboratory-scale models of rock failure processes and on the simulation of damage development around underground excavations. 展开更多
关键词 Rock fracturing Numerical modeling discrete element method (DEM)Finite-discrete element method (FDEM)
下载PDF
Study on a Dual Embedded Discrete Fracture Model for Fluid Flow in Fractured Porous Media 被引量:1
18
作者 Heng Zhang Tingyu Li +3 位作者 Dongxu Han Daobing Wang Dongliang Sun Bo Yu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第7期5-21,共17页
Simulation of fluid flow in the fractured porous media is very important and challenging.Researchers have developed some models for fractured porous media.With the development of related research in recent years,the p... Simulation of fluid flow in the fractured porous media is very important and challenging.Researchers have developed some models for fractured porous media.With the development of related research in recent years,the prospect of embedded discrete fracture model(EDFM)is more and more bright.However,since the size of the fractures in the actual reservoir varies greatly,a very fine grid should be used which leads to a huge burden to the computing resources.To address this challenge,in the present paper,an upscaling based model is proposed.In this model,the flow in large-scale fractures is directly described by the EDFM while that in the small-scale fractures is upscaled through local simulation by EDFM.The EDFM is used to simulate the large-and small-scale fractures independently two times,so the new model is called dual embedded discrete fracture model(D-EDFM).In this paper,the detailed implementation process of D-EDFM is introduced and,through test cases,it is found the proposed model is a feasible method to simulate the flow in fractured porous media. 展开更多
关键词 Dual embedded discrete fracture model(D-EDFM) local upscaling fractured
下载PDF
Productivity simulation of hydraulically fractured wells based on hybrid local grid refinement and embedded discrete fracture model
19
作者 ZHU Dawei HU Yongle +7 位作者 CUI Mingyue CHEN Yandong LIANG Chong CAI Wenxin HE Yanhui WANG Xiaoyong CHEN Hui LI Xiang 《Petroleum Exploration and Development》 2020年第2期365-373,共9页
Using current Embedded Discrete Fracture Models(EDFM) to predict the productivity of fractured wells has some drawbacks, such as not supporting corner grid, low precision in the near wellbore zone, and disregarding th... Using current Embedded Discrete Fracture Models(EDFM) to predict the productivity of fractured wells has some drawbacks, such as not supporting corner grid, low precision in the near wellbore zone, and disregarding the heterogeneity of conductivity brought by non-uniform sand concentration. An EDFM is developed based on the corner grid, which enables high efficient calculation of the transmissibility between the embedded fractures and matrix grids, and calculation of the permeability of each polygon in the embedded fractures by the lattice data of the artificial fracture aperture. On this basis, a coupling method of local grid refinement(LGR) and embedded discrete fracture model is designed, which is verified by comparing the calculation results with the Discrete Fracture Network(DFN) method and fitting the actual production data of the first hydraulically fractured well in Iraq. By using this method and orthogonal experimental design, the optimization of the parameters of the first multi-stage fractured horizontal well in the same block is completed. The results show the proposed method has theoretical and practical significance for improving the adaptability of EDFM and the accuracy of productivity prediction of fractured wells, and enables the coupling of fracture modeling and numerical productivity simulation at reservoir scale. 展开更多
关键词 hydraulic fracturing grid refinement embedded discrete fracture method reservoir numerical simulation productivity prediction parameters optimization
下载PDF
Estimation of fracture size and azimuth in the universal elliptical disc model based on trace information 被引量:3
20
作者 Jichao Guo Jun Zheng +1 位作者 Qing Lü Jianhui Deng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第6期1391-1405,共15页
The geometric characteristics of fractures within a rock mass can be inferred by the data sampling from boreholes or exposed surfaces.Recently,the universal elliptical disc(UED)model was developed to represent natural... The geometric characteristics of fractures within a rock mass can be inferred by the data sampling from boreholes or exposed surfaces.Recently,the universal elliptical disc(UED)model was developed to represent natural fractures,where the fracture is assumed to be an elliptical disc and the fracture orientation,rotation angle,length of the long axis and ratio of short-long axis lengths are considered as variables.This paper aims to estimate the fracture size-and azimuth-related parameters in the UED model based on the trace information from sampling windows.The stereological relationship between the trace length,size-and azimuth-related parameters of the UED model was established,and the formulae of the mean value and standard deviation of trace length were proposed.The proposed formulae were validated via the Monte Carlo simulations with less than 5%of error rate between the calculated and true values.With respect to the estimation of the size-and azimuth-related parameters using the trace length,an optimization method was developed based on the pre-assumed size and azimuth distribution forms.A hypothetical case study was designed to illustrate and verify the parameter estimation method,where three combinations of the sampling windows were used to estimate the parameters,and the results showed that the estimated values could agree well with the true values.Furthermore,a hypothetical three-dimensional(3D)elliptical fracture network was constructed,and the circular disc,non-UED and UED models were used to represent it.The simulated trace information from different models was compared,and the results clearly illustrated the superiority of the proposed UED model over the existing circular disc and non-UED models。 展开更多
关键词 Universal elliptical disc(UED)model Rock mass discrete fracture network(DFN) Optimization algorithm Inverse problem
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部