Based on the concept of discrete adiabatic invariant, this paper studies the perturbation to Mei symmetry and Mei adiabatic invariants of the discrete generalized Birkhoffian system. The discrete Mei exact invariant i...Based on the concept of discrete adiabatic invariant, this paper studies the perturbation to Mei symmetry and Mei adiabatic invariants of the discrete generalized Birkhoffian system. The discrete Mei exact invariant induced from the Mei symmetry of the system without perturbation is given. The criterion of the perturbation to Mei symmetry is established and the discrete Mei adiabatic invariant induced from the perturbation to Mei symmetry is obtained. Meanwhile, an example is discussed to illustrate the application of the results.展开更多
The Noether symmetry, the Mei symmetry and the conserved quantities of discrete generalized Birkhoffian system are studied in this paper. Using the difference discrete variational approach, the difference discrete var...The Noether symmetry, the Mei symmetry and the conserved quantities of discrete generalized Birkhoffian system are studied in this paper. Using the difference discrete variational approach, the difference discrete variational principle of discrete generalized Birkhoffian system is derived. The discrete equations of motion of the system are established. The criterion of Noether symmetry and Mei symmetry of the system is given. The discrete Noether and Mei conserved quantities and the conditions for their existence are obtained. Finally, an example is given to show the applications of the results.展开更多
Generalized synchronization of two discrete systems was discussed. By constructing appropriately nonlinear coupling terms, some sufficient conditions for determining the generalized synchronization between the drive a...Generalized synchronization of two discrete systems was discussed. By constructing appropriately nonlinear coupling terms, some sufficient conditions for determining the generalized synchronization between the drive and response systems were derived. In a positive invariant and bounded set, many chaotic maps satisfy the sufficient conditions. The effectiveness of the sufficient conditions is illustrated by three examples.展开更多
The existence of two kinds of generalized synchronization manifold in two unidirectionally coupled discrete stochastic dynamical systems is studied in this paper. When the drive system is chaotic and the modified resp...The existence of two kinds of generalized synchronization manifold in two unidirectionally coupled discrete stochastic dynamical systems is studied in this paper. When the drive system is chaotic and the modified response system collapses to an asymptotically stable equilibrium or asymptotically stable periodic orbit, under certain conditions, the existence of the generalized synchronization can be converted to the problem of a Lipschitz contractive fixed point or Schauder fixed point. Moreover, the exponential attractive property of generalized synchronization manifold is strictly proved. In addition, numerical simulations demonstrate the correctness of the present theory. The physical background and meaning of the results obtained in this paper are also discussed.展开更多
The purpose of this article is to investigate the sufficient conditions for the global asymptotic stability of one equilibrium point of a generalized Ricker competition system,……which appears as a model for dynamics...The purpose of this article is to investigate the sufficient conditions for the global asymptotic stability of one equilibrium point of a generalized Ricker competition system,……which appears as a model for dynamics with one extinct species, by applying the technique of average functions and the new principle of competitive exclusion.展开更多
In this paper, we analyze the seismic signal in the time-frequency domain using the generalized S-transform combined with spectrum modeling. Without assuming that the reflection coefficients are random white noise as ...In this paper, we analyze the seismic signal in the time-frequency domain using the generalized S-transform combined with spectrum modeling. Without assuming that the reflection coefficients are random white noise as in the conventional resolution-enhanced techniques, the wavelet which changes with time and frequency was simulated and eliminated. After using the inverse S-transform for the processed instantaneous spectrum, the signal in the time domain was obtained again with a more balanced spectrum and broader frequency band. The quality of seismic data was improved without additional noise.展开更多
<div style="text-align:justify;"> Generalized S-transform is a time-frequency analysis method which has higher resolution than S-transform. It can precisely extract the time-amplitude characteristics o...<div style="text-align:justify;"> Generalized S-transform is a time-frequency analysis method which has higher resolution than S-transform. It can precisely extract the time-amplitude characteristics of different frequency components in the signal. In this paper, a novel protection method for VSC-HVDC (Voltage source converter based high voltage DC) based on Generalized S-transform is proposed. Firstly, extracting frequency component of fault current by Generalized S-transform and using mutation point of high frequency to determine the fault time. Secondly, using the zero-frequency component of fault current to eliminate disturbances. Finally, the polarity of sudden change currents in the two terminals is employed to discriminate the internal and external faults. Simulations in PSCAD/EMTDC and MATLAB show that the proposed method can distinguish faults accurately and effectively. </div>展开更多
The echo of the material level is non-stationary and contains many singularities.The echo contains false echoes and noise,which affects the detection of the material level signals,resulting in low accuracy of material...The echo of the material level is non-stationary and contains many singularities.The echo contains false echoes and noise,which affects the detection of the material level signals,resulting in low accuracy of material level measurement.A new method for detecting and correcting the material level signal is proposed,which is based on the generalized S-transform and singular value decomposition(GST-SVD).In this project,the change of material level is regarded as the low speed moving target.First,the generalized S-transform is performed on the echo signals.During the transformation process,the variation trend of window of the generalized S-transform is adjusted according to the frequency distribution characteristics of the material level echo signal,achieving the purpose of detecting the signal.Secondly,the SVD is used to reconstruct the time-frequency coefficient matrix.At last,the reconstructed time-frequency matrix performs an inverse transform.The experimental results show that the method can accurately detect the material level echo signal,and it can reserve the detailed characteristics of the signal while suppressing the noise,and reduce the false echo interference.Compared with other methods,the material level measurement error does not exceed 4.01%,and the material level measurement accuracy can reach 0.40%F.S.展开更多
In practical engineering,sometimes the probability density functions( PDFs) of stress and strength can not be exactly determined,or only limited experiment data are available. In these cases,the traditional stress-str...In practical engineering,sometimes the probability density functions( PDFs) of stress and strength can not be exactly determined,or only limited experiment data are available. In these cases,the traditional stress-strength interference( SSI) model based on classical probabilistic approach can not be used to evaluate reliabilities of components. To solve this issue, the traditional universal generating function( UGF) is introduced and then it is extended to represent the discrete interval-valued random variable.Based on the extended UGF,an improved discrete interval-valued SSI model is proposed, which has higher calculation precision compared with the existing methods. Finally,an illustrative case is given to demonstrate the validity of the proposed model.展开更多
In this book new results on controller design techniques for the tracking of generic reference inputs are presented. They allow the design of a controller for an uncertain process, either continuous or discrete-time, ...In this book new results on controller design techniques for the tracking of generic reference inputs are presented. They allow the design of a controller for an uncertain process, either continuous or discrete-time, without zeros, and with measurable state. The controller guarantees that the control system is Type 1 and has the desired constant gain and poles or that the control system tracks, with a specified maximum error and with a specified maximum time constant, a generic reference with bounded derivative (variation in the discrete-time case), also in the presence of a generic disturbance with bounded derivative (variation). In addition, it is considered the case in which the reference is known a priori. The utility and the efficiency of the proposed methods are illustrated with attractive and significant examples of motion control and temperature control. This book is useful for the design of control systems, especially for manufacturing systems, that are versatile, fast, precise and robust.展开更多
A method for estimating the component reliability is proposed when the probability density functions of stress and strength can not be exactly determined. For two groups of finite experimental data about the stress an...A method for estimating the component reliability is proposed when the probability density functions of stress and strength can not be exactly determined. For two groups of finite experimental data about the stress and strength, an interval statistics method is introduced. The processed results are formulated as two interval-valued random variables and are graphically represented component reliability are proposed based on the by using two histograms. The lower and upper bounds of universal generating function method and are calculated by solving two discrete stress-strength interference models. The graphical calculations of the proposed reliability bounds are presented through a numerical example and the confidence of the proposed reliability bounds is discussed to demonstrate the validity of the proposed method. It is showed that the proposed reliability bounds can undoubtedly bracket the real reliability value. The proposed method extends the exciting universal generating function method and can give an interval estimation of component reliability in the case of lake of sufficient experimental data. An application example is given to illustrate the proposed method展开更多
This paper considers the problem of delay-dependent robust optimal H<sub>∞</sub> control for a class of uncertain two-dimensional (2-D) discrete state delay systems described by the general model (GM). Th...This paper considers the problem of delay-dependent robust optimal H<sub>∞</sub> control for a class of uncertain two-dimensional (2-D) discrete state delay systems described by the general model (GM). The parameter uncertainties are assumed to be norm-bounded. A linear matrix inequality (LMI)-based sufficient condition for the existence of delay-dependent g-suboptimal state feedback robust H<sub>∞</sub> controllers which guarantees not only the asymptotic stability of the closed-loop system, but also the H<sub>∞</sub> noise attenuation g over all admissible parameter uncertainties is established. Furthermore, a convex optimization problem is formulated to design a delay-dependent state feedback robust optimal H<sub>∞</sub> controller which minimizes the H<sub>∞</sub> noise attenuation g of the closed-loop system. Finally, an illustrative example is provided to demonstrate the effectiveness of the proposed method.展开更多
This paper investigates the problem of robust optimal H<sub>∞</sub> control for uncertain two-dimensional (2-D) discrete state-delayed systems described by the general model (GM) with norm-bounded uncerta...This paper investigates the problem of robust optimal H<sub>∞</sub> control for uncertain two-dimensional (2-D) discrete state-delayed systems described by the general model (GM) with norm-bounded uncertainties. A sufficient condition for the existence of g-suboptimal robust H<sub><sub></sub></sub><sub>∞</sub> state feedback controllers is established, based on linear matrix inequality (LMI) approach. Moreover, a convex optimization problem is developed to design a robust optimal state feedback controller which minimizes the H<sub><sub><sub></sub></sub></sub><sub>∞</sub> noise attenuation level of the resulting closed-loop system. Finally, two illustrative examples are given to demonstrate the effectiveness of the proposed method.展开更多
Several software reliability growth models (SRGM) have been developed to monitor the reliability growth during the testing phase of software development. In most of the existing research available in the literatures...Several software reliability growth models (SRGM) have been developed to monitor the reliability growth during the testing phase of software development. In most of the existing research available in the literatures, it is considered that a similar testing effort is required on each debugging effort. However, in practice, different types of faults may require different amounts of testing efforts for their detection and removal. Consequently, faults are classified into three categories on the basis of severity: simple, hard and complex. This categorization may be extended to r type of faults on the basis of severity. Although some existing research in the literatures has incorporated this concept that fault removal rate (FRR) is different for different types of faults, they assume that the FRR remains constant during the overall testing period. On the contrary, it has been observed that as testing progresses, FRR changes due to changing testing strategy, skill, environment and personnel resources. In this paper, a general discrete SRGM is proposed for errors of different severity in software systems using the change-point concept. Then, the models are formulated for two particular environments. The models were validated on two real-life data sets. The results show better fit and wider applicability of the proposed models as to different types of failure datasets.展开更多
In this article, we develop a fully Discrete Galerkin(DG) method for solving ini- tial value fractional integro-differential equations(FIDEs). We consider Generalized Jacobi polynomials(CJPs) with indexes corres...In this article, we develop a fully Discrete Galerkin(DG) method for solving ini- tial value fractional integro-differential equations(FIDEs). We consider Generalized Jacobi polynomials(CJPs) with indexes corresponding to the number of homogeneous initial conditions as natural basis functions for the approximate solution. The fractional derivatives are used in the Caputo sense. The numerical solvability of algebraic system obtained from implementation of proposed method for a special case of FIDEs is investigated. We also provide a suitable convergence analysis to approximate solutions under a more general regularity assumption on the exact solution. Numerical results are presented to demonstrate the effectiveness of the proposed method.展开更多
This paper proposes a discrete-time robust control technique for an uncertain nonlinear system. The uncertainty mainly affects the system dynamics due to mismatched parameter variation which is bounded by a predefined...This paper proposes a discrete-time robust control technique for an uncertain nonlinear system. The uncertainty mainly affects the system dynamics due to mismatched parameter variation which is bounded by a predefined known function. In order to compensate the effect of uncertainty, a robust control input is derived by formulating an equivalent optimal control problem for a virtual nominal system with a modified costfunctional. To derive the stabilizing control law for a mismatched system, this paper introduces another control input named as virtual input. This virtual input is not applied directly to stabilize the uncertain system, rather it is used to define a sufficient condition. To solve the nonlinear optimal control problem, a discretetime general Hamilton-Jacobi-Bellman(DT-GHJB) equation is considered and it is approximated numerically through a neural network(NN) implementation. The approximated solution of DTGHJB is used to compute the suboptimal control input for the virtual system. The suboptimal inputs for the virtual system ensure the asymptotic stability of the closed-loop uncertain system. A numerical example is illustrated with simulation results to prove the efficacy of the proposed control algorithm.展开更多
It is necessary to test for varying dispersion in generalized nonlinear models.Wei,et al(1998) developed a likelihood ratio test,a score test and their adjustments to test for varying dispersion in continuous exponent...It is necessary to test for varying dispersion in generalized nonlinear models.Wei,et al(1998) developed a likelihood ratio test,a score test and their adjustments to test for varying dispersion in continuous exponential family nonlinear models.This type of problem in the framework of general discrete exponential family nonlinear models is discussed.Two types of varying dispersion,which are random coefficients model and random effects model,are proposed,and corresponding score test statistics are constructed and expressed in simple,easy to use,matrix formulas.展开更多
This paper presents a new scheme to achieve generalized synchronization(GS) between different discrete-time chaotic(hyperchaotic) systems.The approach is based on a theorem,which assures that GS is achieved when a...This paper presents a new scheme to achieve generalized synchronization(GS) between different discrete-time chaotic(hyperchaotic) systems.The approach is based on a theorem,which assures that GS is achieved when a structural condition on the considered class of response systems is satisfied.The method presents some useful features:it enables exact GS to be achieved in finite time(i.e.,dead-beat synchronization);it is rigorous,systematic,and straightforward in checking GS;it can be applied to a wide class of chaotic maps.Some examples of GS,including the Grassi-Miller map and a recently introduced minimal 2-D quadratic map,are illustrated.展开更多
We investigate the generalized partial difference operator and propose a model of it in discrete heat equation in this paper. The diffusion of heat is studied by the application of Newton’s law of cooling in dimensio...We investigate the generalized partial difference operator and propose a model of it in discrete heat equation in this paper. The diffusion of heat is studied by the application of Newton’s law of cooling in dimensions up to three and several solutions are postulated for the same. Through numerical simulations using MATLAB, solutions are validated and applications are derived.展开更多
Discrete memristor has become a hotspot since it was proposed recently.However,the design of chaotic maps based on discrete memristor is in its early research stage.In this paper,a memristive seed chaotic map is propo...Discrete memristor has become a hotspot since it was proposed recently.However,the design of chaotic maps based on discrete memristor is in its early research stage.In this paper,a memristive seed chaotic map is proposed by combining a quadratic discrete memristor with the sine function.Furthermore,by applying the chaotification method,we obtain a high-dimensional chaotic map.Numerical analysis shows that it can generate hyperchaos.With the increase of cascade times,the generated map has more positive Lyapunov exponents and larger hyperchaotic range.The National Institute of Standards and Technology(NIST)test results show that the chaotic pseudo-random sequence generated by cascading two seed maps has good unpredictability,and it indicates the potential in practical application.展开更多
基金Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 09CX04018A)
文摘Based on the concept of discrete adiabatic invariant, this paper studies the perturbation to Mei symmetry and Mei adiabatic invariants of the discrete generalized Birkhoffian system. The discrete Mei exact invariant induced from the Mei symmetry of the system without perturbation is given. The criterion of the perturbation to Mei symmetry is established and the discrete Mei adiabatic invariant induced from the perturbation to Mei symmetry is obtained. Meanwhile, an example is discussed to illustrate the application of the results.
基金Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 09CX04018A)
文摘The Noether symmetry, the Mei symmetry and the conserved quantities of discrete generalized Birkhoffian system are studied in this paper. Using the difference discrete variational approach, the difference discrete variational principle of discrete generalized Birkhoffian system is derived. The discrete equations of motion of the system are established. The criterion of Noether symmetry and Mei symmetry of the system is given. The discrete Noether and Mei conserved quantities and the conditions for their existence are obtained. Finally, an example is given to show the applications of the results.
基金Project supported by the National Natural Science Foundation of China (Nos.10372054 and 70431002)
文摘Generalized synchronization of two discrete systems was discussed. By constructing appropriately nonlinear coupling terms, some sufficient conditions for determining the generalized synchronization between the drive and response systems were derived. In a positive invariant and bounded set, many chaotic maps satisfy the sufficient conditions. The effectiveness of the sufficient conditions is illustrated by three examples.
基金Project supported by the National Natural Science Foundation of China (Grant No.11002061)
文摘The existence of two kinds of generalized synchronization manifold in two unidirectionally coupled discrete stochastic dynamical systems is studied in this paper. When the drive system is chaotic and the modified response system collapses to an asymptotically stable equilibrium or asymptotically stable periodic orbit, under certain conditions, the existence of the generalized synchronization can be converted to the problem of a Lipschitz contractive fixed point or Schauder fixed point. Moreover, the exponential attractive property of generalized synchronization manifold is strictly proved. In addition, numerical simulations demonstrate the correctness of the present theory. The physical background and meaning of the results obtained in this paper are also discussed.
文摘The purpose of this article is to investigate the sufficient conditions for the global asymptotic stability of one equilibrium point of a generalized Ricker competition system,……which appears as a model for dynamics with one extinct species, by applying the technique of average functions and the new principle of competitive exclusion.
基金supported by National 973 Key Basic Research Development Program(No.2007CB209602)National 863 High Technology Research Development Program (No.2007AA067.229)
文摘In this paper, we analyze the seismic signal in the time-frequency domain using the generalized S-transform combined with spectrum modeling. Without assuming that the reflection coefficients are random white noise as in the conventional resolution-enhanced techniques, the wavelet which changes with time and frequency was simulated and eliminated. After using the inverse S-transform for the processed instantaneous spectrum, the signal in the time domain was obtained again with a more balanced spectrum and broader frequency band. The quality of seismic data was improved without additional noise.
文摘<div style="text-align:justify;"> Generalized S-transform is a time-frequency analysis method which has higher resolution than S-transform. It can precisely extract the time-amplitude characteristics of different frequency components in the signal. In this paper, a novel protection method for VSC-HVDC (Voltage source converter based high voltage DC) based on Generalized S-transform is proposed. Firstly, extracting frequency component of fault current by Generalized S-transform and using mutation point of high frequency to determine the fault time. Secondly, using the zero-frequency component of fault current to eliminate disturbances. Finally, the polarity of sudden change currents in the two terminals is employed to discriminate the internal and external faults. Simulations in PSCAD/EMTDC and MATLAB show that the proposed method can distinguish faults accurately and effectively. </div>
基金National Natural Science Foundation of China(No.61761027)。
文摘The echo of the material level is non-stationary and contains many singularities.The echo contains false echoes and noise,which affects the detection of the material level signals,resulting in low accuracy of material level measurement.A new method for detecting and correcting the material level signal is proposed,which is based on the generalized S-transform and singular value decomposition(GST-SVD).In this project,the change of material level is regarded as the low speed moving target.First,the generalized S-transform is performed on the echo signals.During the transformation process,the variation trend of window of the generalized S-transform is adjusted according to the frequency distribution characteristics of the material level echo signal,achieving the purpose of detecting the signal.Secondly,the SVD is used to reconstruct the time-frequency coefficient matrix.At last,the reconstructed time-frequency matrix performs an inverse transform.The experimental results show that the method can accurately detect the material level echo signal,and it can reserve the detailed characteristics of the signal while suppressing the noise,and reduce the false echo interference.Compared with other methods,the material level measurement error does not exceed 4.01%,and the material level measurement accuracy can reach 0.40%F.S.
基金National Natural Science Foundation of China(No.51265025)
文摘In practical engineering,sometimes the probability density functions( PDFs) of stress and strength can not be exactly determined,or only limited experiment data are available. In these cases,the traditional stress-strength interference( SSI) model based on classical probabilistic approach can not be used to evaluate reliabilities of components. To solve this issue, the traditional universal generating function( UGF) is introduced and then it is extended to represent the discrete interval-valued random variable.Based on the extended UGF,an improved discrete interval-valued SSI model is proposed, which has higher calculation precision compared with the existing methods. Finally,an illustrative case is given to demonstrate the validity of the proposed model.
文摘In this book new results on controller design techniques for the tracking of generic reference inputs are presented. They allow the design of a controller for an uncertain process, either continuous or discrete-time, without zeros, and with measurable state. The controller guarantees that the control system is Type 1 and has the desired constant gain and poles or that the control system tracks, with a specified maximum error and with a specified maximum time constant, a generic reference with bounded derivative (variation in the discrete-time case), also in the presence of a generic disturbance with bounded derivative (variation). In addition, it is considered the case in which the reference is known a priori. The utility and the efficiency of the proposed methods are illustrated with attractive and significant examples of motion control and temperature control. This book is useful for the design of control systems, especially for manufacturing systems, that are versatile, fast, precise and robust.
基金supported by the Foundation of Hunan Provincial Natural Science of China(13JJ6095,2015JJ2015)the Key Project of Science and Technology Program of Changsha,China(ZD1601010)
文摘A method for estimating the component reliability is proposed when the probability density functions of stress and strength can not be exactly determined. For two groups of finite experimental data about the stress and strength, an interval statistics method is introduced. The processed results are formulated as two interval-valued random variables and are graphically represented component reliability are proposed based on the by using two histograms. The lower and upper bounds of universal generating function method and are calculated by solving two discrete stress-strength interference models. The graphical calculations of the proposed reliability bounds are presented through a numerical example and the confidence of the proposed reliability bounds is discussed to demonstrate the validity of the proposed method. It is showed that the proposed reliability bounds can undoubtedly bracket the real reliability value. The proposed method extends the exciting universal generating function method and can give an interval estimation of component reliability in the case of lake of sufficient experimental data. An application example is given to illustrate the proposed method
文摘This paper considers the problem of delay-dependent robust optimal H<sub>∞</sub> control for a class of uncertain two-dimensional (2-D) discrete state delay systems described by the general model (GM). The parameter uncertainties are assumed to be norm-bounded. A linear matrix inequality (LMI)-based sufficient condition for the existence of delay-dependent g-suboptimal state feedback robust H<sub>∞</sub> controllers which guarantees not only the asymptotic stability of the closed-loop system, but also the H<sub>∞</sub> noise attenuation g over all admissible parameter uncertainties is established. Furthermore, a convex optimization problem is formulated to design a delay-dependent state feedback robust optimal H<sub>∞</sub> controller which minimizes the H<sub>∞</sub> noise attenuation g of the closed-loop system. Finally, an illustrative example is provided to demonstrate the effectiveness of the proposed method.
文摘This paper investigates the problem of robust optimal H<sub>∞</sub> control for uncertain two-dimensional (2-D) discrete state-delayed systems described by the general model (GM) with norm-bounded uncertainties. A sufficient condition for the existence of g-suboptimal robust H<sub><sub></sub></sub><sub>∞</sub> state feedback controllers is established, based on linear matrix inequality (LMI) approach. Moreover, a convex optimization problem is developed to design a robust optimal state feedback controller which minimizes the H<sub><sub><sub></sub></sub></sub><sub>∞</sub> noise attenuation level of the resulting closed-loop system. Finally, two illustrative examples are given to demonstrate the effectiveness of the proposed method.
文摘Several software reliability growth models (SRGM) have been developed to monitor the reliability growth during the testing phase of software development. In most of the existing research available in the literatures, it is considered that a similar testing effort is required on each debugging effort. However, in practice, different types of faults may require different amounts of testing efforts for their detection and removal. Consequently, faults are classified into three categories on the basis of severity: simple, hard and complex. This categorization may be extended to r type of faults on the basis of severity. Although some existing research in the literatures has incorporated this concept that fault removal rate (FRR) is different for different types of faults, they assume that the FRR remains constant during the overall testing period. On the contrary, it has been observed that as testing progresses, FRR changes due to changing testing strategy, skill, environment and personnel resources. In this paper, a general discrete SRGM is proposed for errors of different severity in software systems using the change-point concept. Then, the models are formulated for two particular environments. The models were validated on two real-life data sets. The results show better fit and wider applicability of the proposed models as to different types of failure datasets.
文摘In this article, we develop a fully Discrete Galerkin(DG) method for solving ini- tial value fractional integro-differential equations(FIDEs). We consider Generalized Jacobi polynomials(CJPs) with indexes corresponding to the number of homogeneous initial conditions as natural basis functions for the approximate solution. The fractional derivatives are used in the Caputo sense. The numerical solvability of algebraic system obtained from implementation of proposed method for a special case of FIDEs is investigated. We also provide a suitable convergence analysis to approximate solutions under a more general regularity assumption on the exact solution. Numerical results are presented to demonstrate the effectiveness of the proposed method.
文摘This paper proposes a discrete-time robust control technique for an uncertain nonlinear system. The uncertainty mainly affects the system dynamics due to mismatched parameter variation which is bounded by a predefined known function. In order to compensate the effect of uncertainty, a robust control input is derived by formulating an equivalent optimal control problem for a virtual nominal system with a modified costfunctional. To derive the stabilizing control law for a mismatched system, this paper introduces another control input named as virtual input. This virtual input is not applied directly to stabilize the uncertain system, rather it is used to define a sufficient condition. To solve the nonlinear optimal control problem, a discretetime general Hamilton-Jacobi-Bellman(DT-GHJB) equation is considered and it is approximated numerically through a neural network(NN) implementation. The approximated solution of DTGHJB is used to compute the suboptimal control input for the virtual system. The suboptimal inputs for the virtual system ensure the asymptotic stability of the closed-loop uncertain system. A numerical example is illustrated with simulation results to prove the efficacy of the proposed control algorithm.
基金Supported by the National Natural Science Foundations of China( 1 9631 0 4 0 ) and SSFC( o2 BTJ0 0 1 ) .
文摘It is necessary to test for varying dispersion in generalized nonlinear models.Wei,et al(1998) developed a likelihood ratio test,a score test and their adjustments to test for varying dispersion in continuous exponential family nonlinear models.This type of problem in the framework of general discrete exponential family nonlinear models is discussed.Two types of varying dispersion,which are random coefficients model and random effects model,are proposed,and corresponding score test statistics are constructed and expressed in simple,easy to use,matrix formulas.
文摘This paper presents a new scheme to achieve generalized synchronization(GS) between different discrete-time chaotic(hyperchaotic) systems.The approach is based on a theorem,which assures that GS is achieved when a structural condition on the considered class of response systems is satisfied.The method presents some useful features:it enables exact GS to be achieved in finite time(i.e.,dead-beat synchronization);it is rigorous,systematic,and straightforward in checking GS;it can be applied to a wide class of chaotic maps.Some examples of GS,including the Grassi-Miller map and a recently introduced minimal 2-D quadratic map,are illustrated.
文摘We investigate the generalized partial difference operator and propose a model of it in discrete heat equation in this paper. The diffusion of heat is studied by the application of Newton’s law of cooling in dimensions up to three and several solutions are postulated for the same. Through numerical simulations using MATLAB, solutions are validated and applications are derived.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61901530,62071496,and 62061008)
文摘Discrete memristor has become a hotspot since it was proposed recently.However,the design of chaotic maps based on discrete memristor is in its early research stage.In this paper,a memristive seed chaotic map is proposed by combining a quadratic discrete memristor with the sine function.Furthermore,by applying the chaotification method,we obtain a high-dimensional chaotic map.Numerical analysis shows that it can generate hyperchaos.With the increase of cascade times,the generated map has more positive Lyapunov exponents and larger hyperchaotic range.The National Institute of Standards and Technology(NIST)test results show that the chaotic pseudo-random sequence generated by cascading two seed maps has good unpredictability,and it indicates the potential in practical application.