We consider a class of discrete nonlinear Schrdinger equations with unbounded potentials. We obtain some new multiplicity results of breathers of the equations by using critical point theory. Our results greatly impro...We consider a class of discrete nonlinear Schrdinger equations with unbounded potentials. We obtain some new multiplicity results of breathers of the equations by using critical point theory. Our results greatly improve some recent results in the literature.展开更多
In this paper, we investigate standing waves in discrete nonlinear Schr?dinger equations with nonperiodic bounded potentials. By using the critical point theory and the spectral theory of self-adjoint operators, we pr...In this paper, we investigate standing waves in discrete nonlinear Schr?dinger equations with nonperiodic bounded potentials. By using the critical point theory and the spectral theory of self-adjoint operators, we prove the existence and infinitely many sign-changing solutions of the equation. The results on the exponential decay of standing waves are also provided.展开更多
The dynamical self-trapping of an excitation propagating on one-dimensional of different sizes with nextnearest neighbor (NNN) interaction is studied by means of an explicit fourth order symplectic integrator. Using l...The dynamical self-trapping of an excitation propagating on one-dimensional of different sizes with nextnearest neighbor (NNN) interaction is studied by means of an explicit fourth order symplectic integrator. Using localized initial conditions, the time-averaged occupation probability of the initial site is investigated which is a function of the degree of nonlinearity and the linear coupling strengths. The self-trapping transition occurs at larger values of the nonlinearity parameter as the NNN coupling strength of the lattice increases for fixed size. Furthermore, given NNN coupling strength, the self-trapping properties for different sizes are considered which are some different from the case with general nearest neighbor (NN) interaction.展开更多
We report our recent result about the long-time asymptotics for the defocusing integrable discrete nonlinear Schrodinger equation of Ablowitz- Ladik. The leading term is a sum of two terms that oscillate with decay of...We report our recent result about the long-time asymptotics for the defocusing integrable discrete nonlinear Schrodinger equation of Ablowitz- Ladik. The leading term is a sum of two terms that oscillate with decay of order t-1/2.展开更多
The Jacobian elliptic function expansion method for nonlinear differential-different equations and its algorithm are presented by using some relations among ten Jacobian elliptic functions and successfully construct m...The Jacobian elliptic function expansion method for nonlinear differential-different equations and its algorithm are presented by using some relations among ten Jacobian elliptic functions and successfully construct more new exact doubly-periodic solutions of the integrable discrete nonlinear Schrodinger equation. When the modulous m → 1or 0, doubly-periodic solutions degenerate to solitonic solutions including bright soliton, dark soliton, new solitons as well as trigonometric function solutions.展开更多
We consider the nonlinear difference equations of the form Lu=f(n,u),n∈Z,where L is a Jacobi operator given by(Lu)(n)=a(n)u(n+1)+a(n-1)u(n-1)+b(n)u(n) for n ∈Z,{a(n)} and {b(n)} are real val...We consider the nonlinear difference equations of the form Lu=f(n,u),n∈Z,where L is a Jacobi operator given by(Lu)(n)=a(n)u(n+1)+a(n-1)u(n-1)+b(n)u(n) for n ∈Z,{a(n)} and {b(n)} are real valued N-periodic sequences,and f(n,t) is superlinear on t.Inspired by previous work of Pankov[Discrete Contin.Dyn.Syst.,19,419-430(2007)]and Szulkin and Weth[J.Funct.Anal.,257,3802-3822(2009)],we develop a non-Nehari manifold method to find ground state solutions of Nehari-Pankov type under weaker conditions on f.Unlike the Nehari manifold method,the main idea of our approach lies on finding a minimizing Cerami sequence for the energy functional outside the Nehari-Pankov manifold by using the diagonal method.展开更多
基金supported by Changjiang Scholars and Innovative Research Team in University(Grant No.IRT1226)National Natural Science Foundation of China(Grant No.11171078)+1 种基金the Specialized Fund for the Doctoral Program of Higher Education of China(Grant No.20114410110002)the Project for High Level Talents of Guangdong Higher Education Institutes
文摘We consider a class of discrete nonlinear Schrdinger equations with unbounded potentials. We obtain some new multiplicity results of breathers of the equations by using critical point theory. Our results greatly improve some recent results in the literature.
基金Supported by Science and technology plan foundation of Guangzhou(No.201607010218)by Public Research&Capacity-Building Project of Guangdong(No.2015A070704059).
文摘In this paper, we investigate standing waves in discrete nonlinear Schr?dinger equations with nonperiodic bounded potentials. By using the critical point theory and the spectral theory of self-adjoint operators, we prove the existence and infinitely many sign-changing solutions of the equation. The results on the exponential decay of standing waves are also provided.
基金Supported by National Natural Science Foundation of China under Grant No.11271246Natural Science Research Project of Henan Education Department under Grant No.2011B110024+1 种基金Research Fund for Luoyang Normal University under Grant No.qnjj-2009-02for Henan Polytechnic University under Grant No.Q2012-30A
文摘The dynamical self-trapping of an excitation propagating on one-dimensional of different sizes with nextnearest neighbor (NNN) interaction is studied by means of an explicit fourth order symplectic integrator. Using localized initial conditions, the time-averaged occupation probability of the initial site is investigated which is a function of the degree of nonlinearity and the linear coupling strengths. The self-trapping transition occurs at larger values of the nonlinearity parameter as the NNN coupling strength of the lattice increases for fixed size. Furthermore, given NNN coupling strength, the self-trapping properties for different sizes are considered which are some different from the case with general nearest neighbor (NN) interaction.
文摘We report our recent result about the long-time asymptotics for the defocusing integrable discrete nonlinear Schrodinger equation of Ablowitz- Ladik. The leading term is a sum of two terms that oscillate with decay of order t-1/2.
文摘The Jacobian elliptic function expansion method for nonlinear differential-different equations and its algorithm are presented by using some relations among ten Jacobian elliptic functions and successfully construct more new exact doubly-periodic solutions of the integrable discrete nonlinear Schrodinger equation. When the modulous m → 1or 0, doubly-periodic solutions degenerate to solitonic solutions including bright soliton, dark soliton, new solitons as well as trigonometric function solutions.
基金Supported by NSFC(Grant No.11571370)the Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20120162110021)of China
文摘We consider the nonlinear difference equations of the form Lu=f(n,u),n∈Z,where L is a Jacobi operator given by(Lu)(n)=a(n)u(n+1)+a(n-1)u(n-1)+b(n)u(n) for n ∈Z,{a(n)} and {b(n)} are real valued N-periodic sequences,and f(n,t) is superlinear on t.Inspired by previous work of Pankov[Discrete Contin.Dyn.Syst.,19,419-430(2007)]and Szulkin and Weth[J.Funct.Anal.,257,3802-3822(2009)],we develop a non-Nehari manifold method to find ground state solutions of Nehari-Pankov type under weaker conditions on f.Unlike the Nehari manifold method,the main idea of our approach lies on finding a minimizing Cerami sequence for the energy functional outside the Nehari-Pankov manifold by using the diagonal method.