The original vector discrete ordinate radiative transfer(VDISORT)model takes into account Stokes radiance vector but derives its solution assuming azimuthal symmetric surface reflective matrix and atmospheric scatteri...The original vector discrete ordinate radiative transfer(VDISORT)model takes into account Stokes radiance vector but derives its solution assuming azimuthal symmetric surface reflective matrix and atmospheric scattering phase matrix,such as the phase matrix derived from spherical particles or randomly oriented non-spherical particles.In this study,a new VDISORT is developed for general atmospheric scattering and boundary conditions.Stokes vector is decomposed into both sinusoidal and cosinusoidal harmonic modes,and the radiance at arbitrary viewing geometry is solved directly by adding two zero-weighted points in the Gaussian quadrature scheme.The complex eigenvalues in homogeneous solutions are also taken into full consideration.The accuracy of VDISORT model is comprehensively validated by four cases:Rayleigh scattering case,the spherical particle scattering case with the Legendre expansion coefficients of 0th-13th orders of the phase matrix(hereinafter L13),L13 with a polarized source,and the randomoriented oblate particle scattering case with the Legendre expansion coefficients of 0th-11th orders of the phase matrix(hereinafter L11).In all cases,the simulated radiances agree well with the benchmarks,with absolute biases less than 0.0065,0.0006,and 0.0008 for Rayleigh,unpolarized L13,and L11,respectively.Since a polarized bidirectional reflection distribution function(pBRDF)matrix is used as the lower boundary condition,VDISORT is now able to handle fully coupled atmospheric and surface polarimetric radiative transfer processes.展开更多
The reflection of ocean surface is often assumed azimuthally symmetric in the previous vector discrete ordinate radiative transfer(VDISORT)and many other radiative transfer solvers.This assumption can lead to obvious ...The reflection of ocean surface is often assumed azimuthally symmetric in the previous vector discrete ordinate radiative transfer(VDISORT)and many other radiative transfer solvers.This assumption can lead to obvious errors in the simulated radiances.In this study,the vector radiative transfer equation is solved with a polarized bidirectional reflection distribution function(pBRDF)for computing the surface-leaving radiation from the lower boundary.An azimuthally asymmetric pBRDF model at visible and infrared bands over oceans is fully coupled with the updated VDISORT model.The radiance at the ocean surface is combined with the contributions of atmospheric scattering and surface properties.It is shown that the radiance at the ocean surface also exhibits a strong angular dependence in the Stokes vector and the magnitudes of I.Q.and V increase for a larger azimuthal dependence of pBRDF.In addition,the solar position affects the peaks of sun glitter pattern,thus modulating the signal magnitudes and the angular distributions.As ocean wind increases,the reflection weakens with reduced magnitudes of Stokes parameters and lessvarying angular distributions.展开更多
Ⅰ. INTRODUCTIONSince the discrete ordinate method was introduced by Chandrasekhar in 1950, it has been used by many investigators to study radiative transfer problems in atmosphere, and ex tended the description of r...Ⅰ. INTRODUCTIONSince the discrete ordinate method was introduced by Chandrasekhar in 1950, it has been used by many investigators to study radiative transfer problems in atmosphere, and ex tended the description of radiative transfer from homogeneous medium to展开更多
The problems in some previous discrete ordinate method computations of radiative transfer are discussed, and a new manipulation is presented, which overcomes the difficulties in intensity calculations with the discret...The problems in some previous discrete ordinate method computations of radiative transfer are discussed, and a new manipulation is presented, which overcomes the difficulties in intensity calculations with the discrete ordinate method, and can be used to obtain accurate intensities with less streams. Even in strongly anisotropically scattering atmospheres the intensities in all directions including forward and backward directions of the direct radiation can be obtained satisfactorily.展开更多
China’s first Mars rover,Zhurong,successfully landed in the south of Utopia Planitia.The surface water content at the landing area can provide constraints on mineral formation conditions and help us better understand...China’s first Mars rover,Zhurong,successfully landed in the south of Utopia Planitia.The surface water content at the landing area can provide constraints on mineral formation conditions and help us better understand the evolution of the Martian aqueous and geological environment.In this work,the surface kinetic temperature of the Zhurong landing area was derived by analyzing data from the Mars Express Observatoire pour la Minéralogie,l’Eau,les Glaces et l’Activité(OMEGA)spectrometer.Using the Discrete Ordinate Radiative Transfer(DISORT)model,we performed atmospheric correction and thermal correction for the OMEGA data to obtain the surface effective single-particle absorption thickness(ESPAT)parameter to evaluate the surface water content.The surface water content distribution at the landing area was relatively uniform at a lateral scale of~10 km.At the Zhurong landing site,the surface water content in the topmost layer(a few hundred micrometers)of the regolith was 5−8 weight percent water(wt%H_(2)O),assuming surface particle sizes of<45μm,or 1.6−2.5 wt%H_(2)O,assuming surface particle sizes in the range of 125−250μm.The Mars Surface Composition Detector(MarSCoDe)onboard Zhurong also observed significant H_(2)O/OH signals in the landing area.Our results provide an important regional context for the hydration state of the area and can be further verified by the H content derived from the Laser-Induced Breakdown Spectrometer(LIBS)data of MarSCoDe.展开更多
基金Supported by the Natural Science Program of China(U2142212)Natural Science Foundation of Hunan Province(2021JC0009)National Key Research and Development Program of China(2022YFC3004200)。
文摘The original vector discrete ordinate radiative transfer(VDISORT)model takes into account Stokes radiance vector but derives its solution assuming azimuthal symmetric surface reflective matrix and atmospheric scattering phase matrix,such as the phase matrix derived from spherical particles or randomly oriented non-spherical particles.In this study,a new VDISORT is developed for general atmospheric scattering and boundary conditions.Stokes vector is decomposed into both sinusoidal and cosinusoidal harmonic modes,and the radiance at arbitrary viewing geometry is solved directly by adding two zero-weighted points in the Gaussian quadrature scheme.The complex eigenvalues in homogeneous solutions are also taken into full consideration.The accuracy of VDISORT model is comprehensively validated by four cases:Rayleigh scattering case,the spherical particle scattering case with the Legendre expansion coefficients of 0th-13th orders of the phase matrix(hereinafter L13),L13 with a polarized source,and the randomoriented oblate particle scattering case with the Legendre expansion coefficients of 0th-11th orders of the phase matrix(hereinafter L11).In all cases,the simulated radiances agree well with the benchmarks,with absolute biases less than 0.0065,0.0006,and 0.0008 for Rayleigh,unpolarized L13,and L11,respectively.Since a polarized bidirectional reflection distribution function(pBRDF)matrix is used as the lower boundary condition,VDISORT is now able to handle fully coupled atmospheric and surface polarimetric radiative transfer processes.
基金Supported by the National Natural Science Foundation of China(U2142212 and U2242211),Hunan Provincial Natural Science Foundation of China(2021JC0009)National Key Research and Development Program of China[2019QZKK(Qinghai Tibet KeKao)].
文摘The reflection of ocean surface is often assumed azimuthally symmetric in the previous vector discrete ordinate radiative transfer(VDISORT)and many other radiative transfer solvers.This assumption can lead to obvious errors in the simulated radiances.In this study,the vector radiative transfer equation is solved with a polarized bidirectional reflection distribution function(pBRDF)for computing the surface-leaving radiation from the lower boundary.An azimuthally asymmetric pBRDF model at visible and infrared bands over oceans is fully coupled with the updated VDISORT model.The radiance at the ocean surface is combined with the contributions of atmospheric scattering and surface properties.It is shown that the radiance at the ocean surface also exhibits a strong angular dependence in the Stokes vector and the magnitudes of I.Q.and V increase for a larger azimuthal dependence of pBRDF.In addition,the solar position affects the peaks of sun glitter pattern,thus modulating the signal magnitudes and the angular distributions.As ocean wind increases,the reflection weakens with reduced magnitudes of Stokes parameters and lessvarying angular distributions.
文摘Ⅰ. INTRODUCTIONSince the discrete ordinate method was introduced by Chandrasekhar in 1950, it has been used by many investigators to study radiative transfer problems in atmosphere, and ex tended the description of radiative transfer from homogeneous medium to
文摘The problems in some previous discrete ordinate method computations of radiative transfer are discussed, and a new manipulation is presented, which overcomes the difficulties in intensity calculations with the discrete ordinate method, and can be used to obtain accurate intensities with less streams. Even in strongly anisotropically scattering atmospheres the intensities in all directions including forward and backward directions of the direct radiation can be obtained satisfactorily.
基金funded by the National Key Research and Development Project(Grant No.2019YFE0123300)the National Natural Science Foundation of China(Grant No.42072337)+1 种基金the preresearch project on Civil Aerospace Technologies(Grant Nos.D020101 and D020102)funded by the China National Space Administration through the Pandeng Program of the National Space Science Center,Chinese Academy of Sciences,Key Research Program of the Chinese Academy of Sciences(Grant No.ZDBS-SSW-TLC001).
文摘China’s first Mars rover,Zhurong,successfully landed in the south of Utopia Planitia.The surface water content at the landing area can provide constraints on mineral formation conditions and help us better understand the evolution of the Martian aqueous and geological environment.In this work,the surface kinetic temperature of the Zhurong landing area was derived by analyzing data from the Mars Express Observatoire pour la Minéralogie,l’Eau,les Glaces et l’Activité(OMEGA)spectrometer.Using the Discrete Ordinate Radiative Transfer(DISORT)model,we performed atmospheric correction and thermal correction for the OMEGA data to obtain the surface effective single-particle absorption thickness(ESPAT)parameter to evaluate the surface water content.The surface water content distribution at the landing area was relatively uniform at a lateral scale of~10 km.At the Zhurong landing site,the surface water content in the topmost layer(a few hundred micrometers)of the regolith was 5−8 weight percent water(wt%H_(2)O),assuming surface particle sizes of<45μm,or 1.6−2.5 wt%H_(2)O,assuming surface particle sizes in the range of 125−250μm.The Mars Surface Composition Detector(MarSCoDe)onboard Zhurong also observed significant H_(2)O/OH signals in the landing area.Our results provide an important regional context for the hydration state of the area and can be further verified by the H content derived from the Laser-Induced Breakdown Spectrometer(LIBS)data of MarSCoDe.