We extend the impulse theory for unsteady aerodynamics, from its classic global form to finite-domain formulation, then to a minimum-domain version for discrete wake. Each extension has been confirmed numerically. The...We extend the impulse theory for unsteady aerodynamics, from its classic global form to finite-domain formulation, then to a minimum-domain version for discrete wake. Each extension has been confirmed numerically. The minimum-domain theory indicates that the numerical finding of Li and Lu(2012) is of general significance: The entire force is completely determined by only the time rate of impulse of those vortical structures still connecting to the body, along with the Lamb-vector integral thereof that captures the contribution of all the rest disconnected vortical structures.展开更多
Discrete event system(DES)models promote system engineering,including system design,verification,and assessment.The advancement in manufacturing technology has endowed us to fabricate complex industrial systems.Conseq...Discrete event system(DES)models promote system engineering,including system design,verification,and assessment.The advancement in manufacturing technology has endowed us to fabricate complex industrial systems.Consequently,the adoption of advanced modeling methodologies adept at handling complexity and scalability is imperative.Moreover,industrial systems are no longer quiescent,thus the intelligent operations of the systems should be dynamically specified in the model.In this paper,the composition of the subsystem behaviors is studied to generate the complexity and scalability of the global system model,and a Boolean semantic specifying algorithm is proposed for generating dynamic intelligent operations in the model.In traditional modeling approaches,the change or addition of specifications always necessitates the complete resubmission of the system model,a resource-consuming and error-prone process.Compared with traditional approaches,our approach has three remarkable advantages:(i)an established Boolean semantic can be fitful for all kinds of systems;(ii)there is no need to resubmit the system model whenever there is a change or addition of the operations;(iii)multiple specifying tasks can be easily achieved by continuously adding a new semantic.Thus,this general modeling approach has wide potential for future complex and intelligent industrial systems.展开更多
A decentralized PID neural network(PIDNN) control scheme was proposed to a quadrotor helicopter subjected to wind disturbance. First, the dynamic model that considered the effect of wind disturbance was established vi...A decentralized PID neural network(PIDNN) control scheme was proposed to a quadrotor helicopter subjected to wind disturbance. First, the dynamic model that considered the effect of wind disturbance was established via Newton-Euler formalism.For quadrotor helicopter flying at low altitude in actual situation, it was more susceptible to be influenced by the turbulent wind field.Therefore, the turbulent wind field was generated according to Dryden model and taken into consideration as the disturbance source of quadrotor helicopter. Then, a nested loop control approach was proposed for the stabilization and navigation problems of the quadrotor subjected to wind disturbance. A decentralized PIDNN controller was designed for the inner loop to stabilize the attitude angle. A conventional PID controller was used for the outer loop in order to generate the reference path to inner loop. Moreover, the connective weights of the PIDNN were trained on-line by error back-propagation method. Furthermore, the initial connective weights were identified according to the principle of PID control theory and the appropriate learning rate was selected by discrete Lyapunov theory in order to ensure the stability. Finally, the simulation results demonstrate that the controller can effectively resist external wind disturbances, and presents good stability, maneuverability and robustness.展开更多
Based on the elastic-plastic large deformation finite element formulation as well as the shell element combined discrete Kirchhoff theoretical plate element (DKT) with membrane square element, deep-drawing bending spr...Based on the elastic-plastic large deformation finite element formulation as well as the shell element combined discrete Kirchhoff theoretical plate element (DKT) with membrane square element, deep-drawing bending springback of typical U-pattern is studied. At the same time the springback values of the drawing of patterns' unloading and trimming about the satellite aerial reflecting surface are predicted and also compared with those of the practical punch. Above two springbacks all obtain satisfactory results, which provide a kind of effective quantitative pre-prediction of springback for the practical engineers.展开更多
Stone–Wales(SW) defects are possibly formed in graphene and other two-dimensional materials, and have multiple influence on their physical and chemical properties. In this study, the transition state of SW defects in...Stone–Wales(SW) defects are possibly formed in graphene and other two-dimensional materials, and have multiple influence on their physical and chemical properties. In this study, the transition state of SW defects in graphene is determined with the fully discrete Peierls theory. Furthermore, the atomic formation process is investigated by means of ab-initio simulations. The atomic structure change and energetics of the SW transformation are revealed. It is found that the transition state is at the SW bond rotation of 34.5°and the activation energy barrier is about 12 eV. This work provides a new method to investigate SW transformations in graphene-like materials and to explore unknown SW-type defects in other 2D materials.展开更多
We introduce a new notion of equivalence of discrete Morse functions on graphs called persistence equivalence.Two functions are considered persistence equivalent if and only if they induce the same persistence diagram...We introduce a new notion of equivalence of discrete Morse functions on graphs called persistence equivalence.Two functions are considered persistence equivalent if and only if they induce the same persistence diagram.We compare this notion of equivalence to other notions of equivalent discrete Morse functions.Then we compute an upper bound for the number of persistence equivalent discrete Morse functions on a fixed graph and show that this upper bound is sharp in the case where our graph is a tree.This is a version of the"realization problem"of the persistence map.We conclude with an example illustrating our construction.展开更多
In the study of smooth functions on manifolds,min-max theory provides a mechanism for identifying critical values of a function.We introduce a discretized version of this theory associated to a discrete Morse function...In the study of smooth functions on manifolds,min-max theory provides a mechanism for identifying critical values of a function.We introduce a discretized version of this theory associated to a discrete Morse function on a(regular)cell complex.As applications we prove a discrete version of the mountain pass lemma and give an alternate proof of a discrete Lusternik-Schnirelmann theorem.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.10921202,11221062,11521091 and 11472016)
文摘We extend the impulse theory for unsteady aerodynamics, from its classic global form to finite-domain formulation, then to a minimum-domain version for discrete wake. Each extension has been confirmed numerically. The minimum-domain theory indicates that the numerical finding of Li and Lu(2012) is of general significance: The entire force is completely determined by only the time rate of impulse of those vortical structures still connecting to the body, along with the Lamb-vector integral thereof that captures the contribution of all the rest disconnected vortical structures.
基金supported by the National Natural Science Foundation of China(U21B2074,52105070).
文摘Discrete event system(DES)models promote system engineering,including system design,verification,and assessment.The advancement in manufacturing technology has endowed us to fabricate complex industrial systems.Consequently,the adoption of advanced modeling methodologies adept at handling complexity and scalability is imperative.Moreover,industrial systems are no longer quiescent,thus the intelligent operations of the systems should be dynamically specified in the model.In this paper,the composition of the subsystem behaviors is studied to generate the complexity and scalability of the global system model,and a Boolean semantic specifying algorithm is proposed for generating dynamic intelligent operations in the model.In traditional modeling approaches,the change or addition of specifications always necessitates the complete resubmission of the system model,a resource-consuming and error-prone process.Compared with traditional approaches,our approach has three remarkable advantages:(i)an established Boolean semantic can be fitful for all kinds of systems;(ii)there is no need to resubmit the system model whenever there is a change or addition of the operations;(iii)multiple specifying tasks can be easily achieved by continuously adding a new semantic.Thus,this general modeling approach has wide potential for future complex and intelligent industrial systems.
基金Project(2011ZA51001)supported by National Aerospace Science Foundation of China
文摘A decentralized PID neural network(PIDNN) control scheme was proposed to a quadrotor helicopter subjected to wind disturbance. First, the dynamic model that considered the effect of wind disturbance was established via Newton-Euler formalism.For quadrotor helicopter flying at low altitude in actual situation, it was more susceptible to be influenced by the turbulent wind field.Therefore, the turbulent wind field was generated according to Dryden model and taken into consideration as the disturbance source of quadrotor helicopter. Then, a nested loop control approach was proposed for the stabilization and navigation problems of the quadrotor subjected to wind disturbance. A decentralized PIDNN controller was designed for the inner loop to stabilize the attitude angle. A conventional PID controller was used for the outer loop in order to generate the reference path to inner loop. Moreover, the connective weights of the PIDNN were trained on-line by error back-propagation method. Furthermore, the initial connective weights were identified according to the principle of PID control theory and the appropriate learning rate was selected by discrete Lyapunov theory in order to ensure the stability. Finally, the simulation results demonstrate that the controller can effectively resist external wind disturbances, and presents good stability, maneuverability and robustness.
基金This project is supported by National Natural Science Foundation of China (No.19832020)Provincial Natural Science Foundation of Jilin (No.20000519)
文摘Based on the elastic-plastic large deformation finite element formulation as well as the shell element combined discrete Kirchhoff theoretical plate element (DKT) with membrane square element, deep-drawing bending springback of typical U-pattern is studied. At the same time the springback values of the drawing of patterns' unloading and trimming about the satellite aerial reflecting surface are predicted and also compared with those of the practical punch. Above two springbacks all obtain satisfactory results, which provide a kind of effective quantitative pre-prediction of springback for the practical engineers.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11847089)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 20KJB430002)GuiZhou Provincial Department of Science and Technology, China (Grant No. QKHJC[2019]1167)。
文摘Stone–Wales(SW) defects are possibly formed in graphene and other two-dimensional materials, and have multiple influence on their physical and chemical properties. In this study, the transition state of SW defects in graphene is determined with the fully discrete Peierls theory. Furthermore, the atomic formation process is investigated by means of ab-initio simulations. The atomic structure change and energetics of the SW transformation are revealed. It is found that the transition state is at the SW bond rotation of 34.5°and the activation energy barrier is about 12 eV. This work provides a new method to investigate SW transformations in graphene-like materials and to explore unknown SW-type defects in other 2D materials.
文摘We introduce a new notion of equivalence of discrete Morse functions on graphs called persistence equivalence.Two functions are considered persistence equivalent if and only if they induce the same persistence diagram.We compare this notion of equivalence to other notions of equivalent discrete Morse functions.Then we compute an upper bound for the number of persistence equivalent discrete Morse functions on a fixed graph and show that this upper bound is sharp in the case where our graph is a tree.This is a version of the"realization problem"of the persistence map.We conclude with an example illustrating our construction.
文摘In the study of smooth functions on manifolds,min-max theory provides a mechanism for identifying critical values of a function.We introduce a discretized version of this theory associated to a discrete Morse function on a(regular)cell complex.As applications we prove a discrete version of the mountain pass lemma and give an alternate proof of a discrete Lusternik-Schnirelmann theorem.