For flight control systems with time-varying delay, an H∞ output tracking controller is proposed. The controller is designed for the discrete-time state-space model of general aircraft to reduce the effects of uncert...For flight control systems with time-varying delay, an H∞ output tracking controller is proposed. The controller is designed for the discrete-time state-space model of general aircraft to reduce the effects of uncertainties of the mathematical model, external disturbances, and bounded time-varying delay. It is assumed that the feedback-control loop is closed by the communication network, and the network-based control architecture induces time-delays in the feedback information. Suppose that the time delay has both an upper bound and a lower bound. By using the Lyapu- nov-Krasovskii function and the linear matrix inequality (LMI), the delay-dependent stability criterion is derived for the time-delay system. Based on the criterion, a state-feedback H∞ output tracking controller for systems with norm-bounded uncertainties and time-varying delay is presented. The control scheme is applied to the high incidence research model (HIRM), which shows the effectiveness of the proposed approach.展开更多
This paper presents a discrete-time attitude control strategy with equi-global practical stabilizability for aligning the attitude of multiple spacecraft to a predesigned configuration according to a time-variant refe...This paper presents a discrete-time attitude control strategy with equi-global practical stabilizability for aligning the attitude of multiple spacecraft to a predesigned configuration according to a time-variant reference.By utilizing the interference of the wireless channel,the communication scheme designed in this paper can save communication resources,amount of computation,and energy proportionally to the number of spacecraft.The exact discrete-time model and approximate discrete-time model of the consensus-based spacecraft tracking system are given.Then the framework for the design of an event-triggered control scheme for the exact discrete-time system via its approximate models is developed,which avoids the periodic actuation,and Zeno behavior is proved to be excluded.Furthermore,the control scheme can handle the presence of the unknown fading channel.Finally,simulation results are presented to demonstrate the effectiveness of the control strategy.展开更多
基金supported by the National Natural Science Foundation of China (Nos:61074027 and 61273083)
文摘For flight control systems with time-varying delay, an H∞ output tracking controller is proposed. The controller is designed for the discrete-time state-space model of general aircraft to reduce the effects of uncertainties of the mathematical model, external disturbances, and bounded time-varying delay. It is assumed that the feedback-control loop is closed by the communication network, and the network-based control architecture induces time-delays in the feedback information. Suppose that the time delay has both an upper bound and a lower bound. By using the Lyapu- nov-Krasovskii function and the linear matrix inequality (LMI), the delay-dependent stability criterion is derived for the time-delay system. Based on the criterion, a state-feedback H∞ output tracking controller for systems with norm-bounded uncertainties and time-varying delay is presented. The control scheme is applied to the high incidence research model (HIRM), which shows the effectiveness of the proposed approach.
基金co-supported by the Equipment Advance Research Project,China(No.50912020401)the Chinese Government Scholarship(No.201906830037)。
文摘This paper presents a discrete-time attitude control strategy with equi-global practical stabilizability for aligning the attitude of multiple spacecraft to a predesigned configuration according to a time-variant reference.By utilizing the interference of the wireless channel,the communication scheme designed in this paper can save communication resources,amount of computation,and energy proportionally to the number of spacecraft.The exact discrete-time model and approximate discrete-time model of the consensus-based spacecraft tracking system are given.Then the framework for the design of an event-triggered control scheme for the exact discrete-time system via its approximate models is developed,which avoids the periodic actuation,and Zeno behavior is proved to be excluded.Furthermore,the control scheme can handle the presence of the unknown fading channel.Finally,simulation results are presented to demonstrate the effectiveness of the control strategy.