To improve the efficiency of the discrete unified gas kinetic scheme(DUGKS)in capturing cross-scale flow physics,an adaptive partitioning-based discrete unified gas kinetic scheme(ADUGKS)is developed in this work.The ...To improve the efficiency of the discrete unified gas kinetic scheme(DUGKS)in capturing cross-scale flow physics,an adaptive partitioning-based discrete unified gas kinetic scheme(ADUGKS)is developed in this work.The ADUGKS is designed from the discrete characteristic solution to the Boltzmann-BGK equation,which contains the initial distribution function and the local equilibrium state.The initial distribution function contributes to the calculation of free streaming fluxes and the local equilibrium state contributes to the calculation of equilibrium fluxes.When the contribution of the initial distribution function is negative,the local flow field can be regarded as the continuous flow and the Navier-Stokes(N-S)equations can be used to obtain the solution directly.Otherwise,the discrete distribution functions should be updated by the Boltzmann equation to capture the rarefaction effect.Given this,in the ADUGKS,the computational domain is divided into the DUGKS cell and the N-S cell based on the contribu-tion of the initial distribution function to the calculation of free streaming fluxes.In the N-S cell,the local flow field is evolved by solving the N-S equations,while in the DUGKS cell,both the discrete velocity Boltzmann equation and the correspond-ing macroscopic governing equations are solved by a modified DUGKS.Since more and more cells turn into the N-S cell with the decrease of the Knudsen number,a significant acceleration can be achieved for the ADUGKS in the continuum flow regime as compared with the DUGKS.展开更多
To directly incorporate the intermolecular interaction effects into the discrete unified gas-kinetic scheme(DUGKS)for simulations of multiphase fluid flow,we developed a pseudopotential-based DUGKS by coupling the pse...To directly incorporate the intermolecular interaction effects into the discrete unified gas-kinetic scheme(DUGKS)for simulations of multiphase fluid flow,we developed a pseudopotential-based DUGKS by coupling the pseudopotential model that mimics the intermolecular interaction into DUGKS.Due to the flux reconstruction procedure,additional terms that break the isotropic requirements of the pseudopotential model will be introduced.To eliminate the influences of nonisotropic terms,the expression of equilibrium distribution functions is reformulated in a moment-based form.With the isotropy-preserving parameter appropriately tuned,the nonisotropic effects can be properly canceled out.The fundamental capabilities are validated by the flat interface test and the quiescent droplet test.It has been proved that the proposed pseudopotential-based DUGKS managed to produce and maintain isotropic interfaces.The isotropy-preserving property of pseudopotential-based DUGKS in transient conditions is further confirmed by the spinodal decomposition.Stability superiority of the pseudopotential-based DUGKS over the lattice Boltzmann method is also demonstrated by predicting the coexistence densities complying with the van der Waals equation of state.By directly incorporating the intermolecular interactions,the pseudopotential-based DUGKS offers a mesoscopic perspective of understanding multiphase behaviors,which could help gain fresh insights into multiphase fluid flow.展开更多
基金the National Natural Science Foundation of China(12202191,92271103)Natural Science Foundation of Jiangsu Province(BK20210273)+1 种基金Fund of Prospective Layout of Scientific Research for NUAA(Nanjing University of Aeronautics and Astronautics)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘To improve the efficiency of the discrete unified gas kinetic scheme(DUGKS)in capturing cross-scale flow physics,an adaptive partitioning-based discrete unified gas kinetic scheme(ADUGKS)is developed in this work.The ADUGKS is designed from the discrete characteristic solution to the Boltzmann-BGK equation,which contains the initial distribution function and the local equilibrium state.The initial distribution function contributes to the calculation of free streaming fluxes and the local equilibrium state contributes to the calculation of equilibrium fluxes.When the contribution of the initial distribution function is negative,the local flow field can be regarded as the continuous flow and the Navier-Stokes(N-S)equations can be used to obtain the solution directly.Otherwise,the discrete distribution functions should be updated by the Boltzmann equation to capture the rarefaction effect.Given this,in the ADUGKS,the computational domain is divided into the DUGKS cell and the N-S cell based on the contribu-tion of the initial distribution function to the calculation of free streaming fluxes.In the N-S cell,the local flow field is evolved by solving the N-S equations,while in the DUGKS cell,both the discrete velocity Boltzmann equation and the correspond-ing macroscopic governing equations are solved by a modified DUGKS.Since more and more cells turn into the N-S cell with the decrease of the Knudsen number,a significant acceleration can be achieved for the ADUGKS in the continuum flow regime as compared with the DUGKS.
基金National Numerical Wind Tunnel Project,the National Natural Science Foundation of China(No.11902266,11902264,12072283)111 Project of China(B17037).
文摘To directly incorporate the intermolecular interaction effects into the discrete unified gas-kinetic scheme(DUGKS)for simulations of multiphase fluid flow,we developed a pseudopotential-based DUGKS by coupling the pseudopotential model that mimics the intermolecular interaction into DUGKS.Due to the flux reconstruction procedure,additional terms that break the isotropic requirements of the pseudopotential model will be introduced.To eliminate the influences of nonisotropic terms,the expression of equilibrium distribution functions is reformulated in a moment-based form.With the isotropy-preserving parameter appropriately tuned,the nonisotropic effects can be properly canceled out.The fundamental capabilities are validated by the flat interface test and the quiescent droplet test.It has been proved that the proposed pseudopotential-based DUGKS managed to produce and maintain isotropic interfaces.The isotropy-preserving property of pseudopotential-based DUGKS in transient conditions is further confirmed by the spinodal decomposition.Stability superiority of the pseudopotential-based DUGKS over the lattice Boltzmann method is also demonstrated by predicting the coexistence densities complying with the van der Waals equation of state.By directly incorporating the intermolecular interactions,the pseudopotential-based DUGKS offers a mesoscopic perspective of understanding multiphase behaviors,which could help gain fresh insights into multiphase fluid flow.