In the previous papers I and II, we have studied the difference discrete variational principle and the Euler?Lagrange cohomology in the framework of multi-parameter differential approach. We have gotten the difference...In the previous papers I and II, we have studied the difference discrete variational principle and the Euler?Lagrange cohomology in the framework of multi-parameter differential approach. We have gotten the difference discrete Euler?Lagrange equations and canonical ones for the difference discrete versions of classical mechanics and field theory as well as the difference discrete versions for the Euler?Lagrange cohomology and applied them to get the necessary and sufficient condition for the symplectic or multisymplectic geometry preserving properties in both the Lagrangian and Hamiltonian formalisms. In this paper, we apply the difference discrete variational principle and Euler?Lagrange cohomological approach directly to the symplectic and multisymplectic algorithms. We will show that either Hamiltonian schemes or Lagrangian ones in both the symplectic and multisymplectic algorithms are variational integrators and their difference discrete symplectic structure-preserving properties can always be established not only in the solution space but also in the function space if and only if the related closed Euler?Lagrange cohomological conditions are satisfied.展开更多
In this second paper of a series of papers, we explore the difference discrete versions for the Euler?Lagrange cohomology and apply them to the symplectic or multisymplectic geometry and their preserving properties in...In this second paper of a series of papers, we explore the difference discrete versions for the Euler?Lagrange cohomology and apply them to the symplectic or multisymplectic geometry and their preserving properties in both the Lagrangian and Hamiltonian formalisms for discrete mechanics and field theory in the framework of multi-parameter differential approach. In terms of the difference discrete Euler?Lagrange cohomological concepts, we show that the symplectic or multisymplectic geometry and their difference discrete structure-preserving properties can always be established not only in the solution spaces of the discrete Euler?Lagrange or canonical equations derived by the difference discrete variational principle but also in the function space in each case if and only if the relevant closed Euler?Lagrange cohomological conditions are satisfied.展开更多
After introducing some of the basic definitions and results from the theory of groupoid and Lie algebroid,we investigate the discrete Lagrangian mechanics from the viewpoint of groupoid theory and give the connection ...After introducing some of the basic definitions and results from the theory of groupoid and Lie algebroid,we investigate the discrete Lagrangian mechanics from the viewpoint of groupoid theory and give the connection betweengroupoids variation and the methods of the first and second discrete variational principles.展开更多
In this paper, we present a new integration algorithm based on the discrete Pfaff-Birkhoff principle for Birkhoffian systems. It is proved that the new algorithm can preserve the general symplectic geometric structure...In this paper, we present a new integration algorithm based on the discrete Pfaff-Birkhoff principle for Birkhoffian systems. It is proved that the new algorithm can preserve the general symplectic geometric structures of Birkhoffian systems. A numerical experiment for a damping oscillator system is conducted. The result shows that the new algorithm can better simulate the energy dissipation than the R-K method, which illustrates that we can numerically solve the dynamical equations by the discrete variational method in a Birkhoffian framework for the systems with a general symplectic structure. Furthermore, it is demonstrated that the results of the numerical experiments are determined not by the constructing methods of Birkhoffian functions but by whether the numerical method can preserve the inherent nature of the dynamical system.展开更多
The variational integrators of autonomous Birkhoff systems are obtained by the discrete variational principle. The geometric structure of the discrete autonomous Birkhoff system is formulated. The discretization of ma...The variational integrators of autonomous Birkhoff systems are obtained by the discrete variational principle. The geometric structure of the discrete autonomous Birkhoff system is formulated. The discretization of mathematical pendulum shows that the discrete variational method is as effective as symplectic scheme for the autonomous Birkhoff systems.展开更多
We present a numerical simulation method of Noether and Lie symmetries for discrete Hamiltonian systems. The Noether and Lie symmetries for the systems are proposed by investigating the invariance properties of discre...We present a numerical simulation method of Noether and Lie symmetries for discrete Hamiltonian systems. The Noether and Lie symmetries for the systems are proposed by investigating the invariance properties of discrete Lagrangian in phase space. The numerical calculations of a two-degree-of-freedom nonlinear harmonic oscillator show that the difference discrete variational method preserves the exactness and the invariant quantity.展开更多
We introduce the Euler-Lagrange cohomology to study the symplectic and multisymplectic structures and their preserving properties in finite and infinite dimensional Lagrangian systems respectively. We also explore the...We introduce the Euler-Lagrange cohomology to study the symplectic and multisymplectic structures and their preserving properties in finite and infinite dimensional Lagrangian systems respectively. We also explore their certain difference discrete counterparts in the relevant regularly discretized finite and infinite dimensional Lagrangian systems by means of the difference discrete variational principle with the difference being regarded as an entire geometric object and the noncommutative differential calculus on regular lattice. In order to show that in all these cases the symplectic and multisymplectic preserving properties do not necessarily depend on the relevant Euler-Lagrange equations, the Euler-Lagrange cohomological concepts and content in the configuration space are employed.展开更多
Numerical simulation of antennae is a topic in computational electromagnetism,which is concerned withthe numerical study of Maxwell equations.By discrete exterior calculus and the lattice gauge theory with coefficient...Numerical simulation of antennae is a topic in computational electromagnetism,which is concerned withthe numerical study of Maxwell equations.By discrete exterior calculus and the lattice gauge theory with coefficient R,we obtain the Bianchi identity on prism lattice.By defining an inner product of discrete differential forms,we derivethe source equation and continuity equation.Those equations compose the discrete Maxwell equations in vacuum caseon discrete manifold,which are implemented on Java development platform to simulate the Gaussian pulse radiation onantennaes.展开更多
A semi-direct sum of two Lie algebras of four-by-four matrices is presented,and a discrete four-by-fourmatrix spectral problem is introduced.A hierarchy of discrete integrable coupling systems is derived.The obtainedi...A semi-direct sum of two Lie algebras of four-by-four matrices is presented,and a discrete four-by-fourmatrix spectral problem is introduced.A hierarchy of discrete integrable coupling systems is derived.The obtainedintegrable coupling systems are all written in their Hamiltonian forms by the discrete variational identity.Finally,we prove that the lattice equations in the obtained integrable coupling systems are all Liouville integrable discreteHamiltonian systems.展开更多
Based on semi-direct sums of Lie subalgebra G, a higher-dimensional 6 × 6 matrix Lie algebra sμ(6) is constructed. A hierarchy of integrable coupling KdV equation with three potentials is proposed, which is de...Based on semi-direct sums of Lie subalgebra G, a higher-dimensional 6 × 6 matrix Lie algebra sμ(6) is constructed. A hierarchy of integrable coupling KdV equation with three potentials is proposed, which is derived from a new discrete six-by-six matrix spectral problem. Moreover, the Hamiltonian forms is deduced for lattice equation in the resulting hierarchy by means of the discrete variational identity -- a generalized trace identity. A strong symmetry operator of the resulting hierarchy is given. Finally, we prove that the hierarchy of the resulting Hamiltonian equations is Liouville integrable discrete Hamiltonian systems.展开更多
The discrete variational Xα method (DV-Xα) within the framework of density-functional theory was applied to study O 2 molecule adsorption on NiTi (100) and (110) surfaces.The bond order and charge distribution betw...The discrete variational Xα method (DV-Xα) within the framework of density-functional theory was applied to study O 2 molecule adsorption on NiTi (100) and (110) surfaces.The bond order and charge distribution between Ti and O atoms for two possible O 2 molecule adsorption ways on NiTi(100) and (110) surfaces were calculated.It is found that the adsorption way for O-O bond perpendicular to NiTi surface is preferred to that for O-O bond parallel to NiTi surface,and O 2 molecule only interacted with one nearest surface titanium atom during the adsorption process.Mulliken population and the partial density of state analysis show that the interaction between Ti and O atoms is mainly donated by O 2p and Ti 4s electrons on NiTi(110) surface,O 2p and Ti 4s,4p electrons on NiTi(100) surface,respectively.The total density of state analysis shows that NiTi(100) surface is more favorable for O 2 molecule adsorption.展开更多
Using discrete variational X. method within the local-density-functional theory and cluster models, the electronic structure and magnetic property or MnSh(Ce) are investigated.It is round that Sb5p state is much pola...Using discrete variational X. method within the local-density-functional theory and cluster models, the electronic structure and magnetic property or MnSh(Ce) are investigated.It is round that Sb5p state is much polarized by Ce doping.The spin moment of Sb changes from -0.06 V,in MnSh to -0.32μb, in MnSh(Ce).The interaction between Mn and doped Ce is small compared with that between Sb and Ce in MnSh(Ce).The influence to the magneto-optical Property of MnSh by the doped Ce is discussed. It is expected that the Sb-5p polarization caused by Ce will make MnSh(Ce)a promising magneto-optical material.展开更多
The electronic structures of BaMgF4 crystals containing an F colour centre are studied within the framework of the fully relativistic self-consistent Direc-Slater theory, using a numerically discrete variational (DV...The electronic structures of BaMgF4 crystals containing an F colour centre are studied within the framework of the fully relativistic self-consistent Direc-Slater theory, using a numerically discrete variational (DV-Xa) method. It is concluded from the calculated results that the energy levels of the F colour centre are located in the forbidden band. The optical transition energy from the ground state to the excited state for the F colour centre is about 5.12 eV, which corresponds to the 242-nm absorption band. These calculated results can explain the origin of the absorption bands.展开更多
Solving optimization problems with partial differential equations constraints is one of the most challenging problems in the context of industrial applications. In this paper, we study the finite volume element method...Solving optimization problems with partial differential equations constraints is one of the most challenging problems in the context of industrial applications. In this paper, we study the finite volume element method for solving the elliptic Neumann boundary control problems. The variational discretization approach is used to deal with the control. Numerical results demonstrate that the proposed method for control is second-order accuracy in the <em>L</em><sup>2</sup> (Γ) and <em>L</em><sup>∞</sup> (Γ) norm. For state and adjoint state, optimal convergence order in the <em>L</em><sup>2</sup> (Ω) and <em>H</em><sup>1</sup> (Ω) can also be obtained.展开更多
In this paper, we study variational discretization for the constrained optimal control problem governed by convection dominated diffusion equations, where the state equation is approximated by the edge stabilization G...In this paper, we study variational discretization for the constrained optimal control problem governed by convection dominated diffusion equations, where the state equation is approximated by the edge stabilization Galerkin method. A priori error estimates are derived for the state, the adjoint state and the control. Moreover, residual type a posteriori error estimates in the L^2-norm are obtained. Finally, two numerical experiments are presented to illustrate the theoretical results.展开更多
This paper studies variational discretization for the optimal control problem governed by parabolic equations with control constraints. First of all, the authors derive a priori error estimates where|||u - Uh|||...This paper studies variational discretization for the optimal control problem governed by parabolic equations with control constraints. First of all, the authors derive a priori error estimates where|||u - Uh|||L∞(J;L2(Ω)) = O(h2 + k). It is much better than a priori error estimates of standard finite element and backward Euler method where |||u- Uh|||L∞(J;L2(Ω)) = O(h + k). Secondly, the authors obtain a posteriori error estimates of residual type. Finally, the authors present some numerical algorithms for the optimal control problem and do some numerical experiments to illustrate their theoretical results.展开更多
This paper considers the variational discretization for the constrained optimal control problem governed by linear parabolic equations.The state and co-state are approximated by RaviartThomas mixed finite element spac...This paper considers the variational discretization for the constrained optimal control problem governed by linear parabolic equations.The state and co-state are approximated by RaviartThomas mixed finite element spaces,and the authors do not discretize the space of admissible control but implicitly utilize the relation between co-state and control for the discretization of the control.A priori error estimates are derived for the state,the co-state,and the control.Some numerical examples are presented to confirm the theoretical investigations.展开更多
For fourth-order geometric evolution equations for planar curves with the dissipation of the bending energy,including the Willmore and the Helfrich flows,we consider a numerical approach.In this study,we construct a s...For fourth-order geometric evolution equations for planar curves with the dissipation of the bending energy,including the Willmore and the Helfrich flows,we consider a numerical approach.In this study,we construct a structure-preserving method based on a discrete variational derivative method.Furthermore,to prevent the vertex concentration that may lead to numerical instability,we discretely introduce Deckelnick’s tangential velocity.Here,a modification term is introduced in the process of adding tangential velocity.This modified term enables the method to reproduce the equations’properties while preventing vertex concentration.Numerical experiments demonstrate that the proposed approach captures the equations’properties with high accuracy and avoids the concentration of vertices.展开更多
In this paper,optimize-then-discretize,variational discretization and the finite volume method are applied to solve the distributed optimal control problems governed by a second order hyperbolic equation.A semi-discre...In this paper,optimize-then-discretize,variational discretization and the finite volume method are applied to solve the distributed optimal control problems governed by a second order hyperbolic equation.A semi-discrete optimal system is obtained.We prove the existence and uniqueness of the solution to the semidiscrete optimal system and obtain the optimal order error estimates in L ∞(J;L 2)-and L ∞(J;H 1)-norm.Numerical experiments are presented to test these theoretical results.展开更多
This paper analyzes two extended finite element methods(XFEMs)for linear quadratic optimal control problems governed by Poisson equation in non-convex domains.We follow the variational discretization concept to discre...This paper analyzes two extended finite element methods(XFEMs)for linear quadratic optimal control problems governed by Poisson equation in non-convex domains.We follow the variational discretization concept to discretize the continuous problems,and apply an XFEM with a cut-off function and a classic XFEM with a fixed enrichment area to discretize the state and co-state equations.Optimal error estimates are derived for the state,co-state and control.Numerical results confirm our theoretical results.展开更多
文摘In the previous papers I and II, we have studied the difference discrete variational principle and the Euler?Lagrange cohomology in the framework of multi-parameter differential approach. We have gotten the difference discrete Euler?Lagrange equations and canonical ones for the difference discrete versions of classical mechanics and field theory as well as the difference discrete versions for the Euler?Lagrange cohomology and applied them to get the necessary and sufficient condition for the symplectic or multisymplectic geometry preserving properties in both the Lagrangian and Hamiltonian formalisms. In this paper, we apply the difference discrete variational principle and Euler?Lagrange cohomological approach directly to the symplectic and multisymplectic algorithms. We will show that either Hamiltonian schemes or Lagrangian ones in both the symplectic and multisymplectic algorithms are variational integrators and their difference discrete symplectic structure-preserving properties can always be established not only in the solution space but also in the function space if and only if the related closed Euler?Lagrange cohomological conditions are satisfied.
文摘In this second paper of a series of papers, we explore the difference discrete versions for the Euler?Lagrange cohomology and apply them to the symplectic or multisymplectic geometry and their preserving properties in both the Lagrangian and Hamiltonian formalisms for discrete mechanics and field theory in the framework of multi-parameter differential approach. In terms of the difference discrete Euler?Lagrange cohomological concepts, we show that the symplectic or multisymplectic geometry and their difference discrete structure-preserving properties can always be established not only in the solution spaces of the discrete Euler?Lagrange or canonical equations derived by the difference discrete variational principle but also in the function space in each case if and only if the relevant closed Euler?Lagrange cohomological conditions are satisfied.
基金National Key Basic Research Project of China under Grant No.2004CB318000National Natural Science Foundation of China under Grant Nos.10375038 and 90403018
文摘After introducing some of the basic definitions and results from the theory of groupoid and Lie algebroid,we investigate the discrete Lagrangian mechanics from the viewpoint of groupoid theory and give the connection betweengroupoids variation and the methods of the first and second discrete variational principles.
基金supported by the National Natural Science Foundation of China(Grant Nos.11301350,11172120,and 11202090)the Liaoning University Prereporting Fund Natural Projects(Grant No.2013LDGY02)
文摘In this paper, we present a new integration algorithm based on the discrete Pfaff-Birkhoff principle for Birkhoffian systems. It is proved that the new algorithm can preserve the general symplectic geometric structures of Birkhoffian systems. A numerical experiment for a damping oscillator system is conducted. The result shows that the new algorithm can better simulate the energy dissipation than the R-K method, which illustrates that we can numerically solve the dynamical equations by the discrete variational method in a Birkhoffian framework for the systems with a general symplectic structure. Furthermore, it is demonstrated that the results of the numerical experiments are determined not by the constructing methods of Birkhoffian functions but by whether the numerical method can preserve the inherent nature of the dynamical system.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10872084 and 10932002)the Research Program of Higher Education of Liaoning Province,China (Grant No. 2008S098)+3 种基金the Program of Supporting Elitists of Higher Education of Liaoning Province,China (Grant No. 2008RC20)the Program of Constructing Liaoning Provincial Key Laboratory,China (Grant No. 2008403009)the Foundation Research Plan of Liaoning educational Bureau,China (Grant No. L2010147)the Youth fund of Liaoning University,China (Grant No. 2008LDQN04)
文摘The variational integrators of autonomous Birkhoff systems are obtained by the discrete variational principle. The geometric structure of the discrete autonomous Birkhoff system is formulated. The discretization of mathematical pendulum shows that the discrete variational method is as effective as symplectic scheme for the autonomous Birkhoff systems.
基金supported by the Key Program of National Natural Science Foundation of China(Grant No.11232009)the National Natural Science Foundation ofChina(Grant Nos.11072218,11272287,and 11102060)+2 种基金the Shanghai Leading Academic Discipline Project,China(Grant No.S30106)the Natural ScienceFoundation of Henan Province,China(Grant No.132300410051)the Educational Commission of Henan Province,China(Grant No.13A140224)
文摘We present a numerical simulation method of Noether and Lie symmetries for discrete Hamiltonian systems. The Noether and Lie symmetries for the systems are proposed by investigating the invariance properties of discrete Lagrangian in phase space. The numerical calculations of a two-degree-of-freedom nonlinear harmonic oscillator show that the difference discrete variational method preserves the exactness and the invariant quantity.
文摘We introduce the Euler-Lagrange cohomology to study the symplectic and multisymplectic structures and their preserving properties in finite and infinite dimensional Lagrangian systems respectively. We also explore their certain difference discrete counterparts in the relevant regularly discretized finite and infinite dimensional Lagrangian systems by means of the difference discrete variational principle with the difference being regarded as an entire geometric object and the noncommutative differential calculus on regular lattice. In order to show that in all these cases the symplectic and multisymplectic preserving properties do not necessarily depend on the relevant Euler-Lagrange equations, the Euler-Lagrange cohomological concepts and content in the configuration space are employed.
基金Supported by National Key Based Research Project of China under Grant No.2004CB318000National Natural Science Foundation of China under Grant No.10871170
文摘Numerical simulation of antennae is a topic in computational electromagnetism,which is concerned withthe numerical study of Maxwell equations.By discrete exterior calculus and the lattice gauge theory with coefficient R,we obtain the Bianchi identity on prism lattice.By defining an inner product of discrete differential forms,we derivethe source equation and continuity equation.Those equations compose the discrete Maxwell equations in vacuum caseon discrete manifold,which are implemented on Java development platform to simulate the Gaussian pulse radiation onantennaes.
基金the Natural Science Foundation of Shandong Province under Grant No.Q2006A04
文摘A semi-direct sum of two Lie algebras of four-by-four matrices is presented,and a discrete four-by-fourmatrix spectral problem is introduced.A hierarchy of discrete integrable coupling systems is derived.The obtainedintegrable coupling systems are all written in their Hamiltonian forms by the discrete variational identity.Finally,we prove that the lattice equations in the obtained integrable coupling systems are all Liouville integrable discreteHamiltonian systems.
基金Supported by the Nature Science Foundation of Shandong Province of China under Grant No.ZR.2009GM005the Science and Technology Plan Project of the Educational Department of Shandong Province of China under Grant No.J09LA54the research project of "SUST Spring Bud" of Shandong University of Science and Technology of China under Grant No.2009AZZ071
文摘Based on semi-direct sums of Lie subalgebra G, a higher-dimensional 6 × 6 matrix Lie algebra sμ(6) is constructed. A hierarchy of integrable coupling KdV equation with three potentials is proposed, which is derived from a new discrete six-by-six matrix spectral problem. Moreover, the Hamiltonian forms is deduced for lattice equation in the resulting hierarchy by means of the discrete variational identity -- a generalized trace identity. A strong symmetry operator of the resulting hierarchy is given. Finally, we prove that the hierarchy of the resulting Hamiltonian equations is Liouville integrable discrete Hamiltonian systems.
文摘The discrete variational Xα method (DV-Xα) within the framework of density-functional theory was applied to study O 2 molecule adsorption on NiTi (100) and (110) surfaces.The bond order and charge distribution between Ti and O atoms for two possible O 2 molecule adsorption ways on NiTi(100) and (110) surfaces were calculated.It is found that the adsorption way for O-O bond perpendicular to NiTi surface is preferred to that for O-O bond parallel to NiTi surface,and O 2 molecule only interacted with one nearest surface titanium atom during the adsorption process.Mulliken population and the partial density of state analysis show that the interaction between Ti and O atoms is mainly donated by O 2p and Ti 4s electrons on NiTi(110) surface,O 2p and Ti 4s,4p electrons on NiTi(100) surface,respectively.The total density of state analysis shows that NiTi(100) surface is more favorable for O 2 molecule adsorption.
文摘Using discrete variational X. method within the local-density-functional theory and cluster models, the electronic structure and magnetic property or MnSh(Ce) are investigated.It is round that Sb5p state is much polarized by Ce doping.The spin moment of Sb changes from -0.06 V,in MnSh to -0.32μb, in MnSh(Ce).The interaction between Mn and doped Ce is small compared with that between Sb and Ce in MnSh(Ce).The influence to the magneto-optical Property of MnSh by the doped Ce is discussed. It is expected that the Sb-5p polarization caused by Ce will make MnSh(Ce)a promising magneto-optical material.
基金supported by the Foundation of Shanghai Municipal Education Committee,China (Grant No. 09YZ210)the Shanghai Leading Academic Discipline Project (Grant No. S30502)
文摘The electronic structures of BaMgF4 crystals containing an F colour centre are studied within the framework of the fully relativistic self-consistent Direc-Slater theory, using a numerically discrete variational (DV-Xa) method. It is concluded from the calculated results that the energy levels of the F colour centre are located in the forbidden band. The optical transition energy from the ground state to the excited state for the F colour centre is about 5.12 eV, which corresponds to the 242-nm absorption band. These calculated results can explain the origin of the absorption bands.
文摘Solving optimization problems with partial differential equations constraints is one of the most challenging problems in the context of industrial applications. In this paper, we study the finite volume element method for solving the elliptic Neumann boundary control problems. The variational discretization approach is used to deal with the control. Numerical results demonstrate that the proposed method for control is second-order accuracy in the <em>L</em><sup>2</sup> (Γ) and <em>L</em><sup>∞</sup> (Γ) norm. For state and adjoint state, optimal convergence order in the <em>L</em><sup>2</sup> (Ω) and <em>H</em><sup>1</sup> (Ω) can also be obtained.
基金support of the Chinese and German Research Foundations through the Sino-German Workshop on Applied Mathematics held in Hangzhou in October 2007support of the German Research Foundation through the grants DFG06-381 and DFG06-382+1 种基金support of the National Basic Research Program under the Grant 2005CB321701the National Natural Science Foundation of China under the Grant 60474027 and 10771211
文摘In this paper, we study variational discretization for the constrained optimal control problem governed by convection dominated diffusion equations, where the state equation is approximated by the edge stabilization Galerkin method. A priori error estimates are derived for the state, the adjoint state and the control. Moreover, residual type a posteriori error estimates in the L^2-norm are obtained. Finally, two numerical experiments are presented to illustrate the theoretical results.
基金supported by National Science Foundation of ChinaFoundation for Talent Introduction of Guangdong Provincial University+2 种基金Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2008)Specialized Research Fund for the Doctoral Program of Higher Education(20114407110009)Hunan Provincial Innovation Foundation for Postgraduate under Grant(1x2009B120)
文摘This paper studies variational discretization for the optimal control problem governed by parabolic equations with control constraints. First of all, the authors derive a priori error estimates where|||u - Uh|||L∞(J;L2(Ω)) = O(h2 + k). It is much better than a priori error estimates of standard finite element and backward Euler method where |||u- Uh|||L∞(J;L2(Ω)) = O(h + k). Secondly, the authors obtain a posteriori error estimates of residual type. Finally, the authors present some numerical algorithms for the optimal control problem and do some numerical experiments to illustrate their theoretical results.
基金supported by the National Natural Science Foundation of Chinaunder Grant No.11271145Foundation for Talent Introduction of Guangdong Provincial University+3 种基金Fund for the Doctoral Program of Higher Education under Grant No.20114407110009the Project of Department of Education of Guangdong Province under Grant No.2012KJCX0036supported by Hunan Education Department Key Project 10A117the National Natural Science Foundation of China under Grant Nos.11126304 and 11201397
文摘This paper considers the variational discretization for the constrained optimal control problem governed by linear parabolic equations.The state and co-state are approximated by RaviartThomas mixed finite element spaces,and the authors do not discretize the space of admissible control but implicitly utilize the relation between co-state and control for the discretization of the control.A priori error estimates are derived for the state,the co-state,and the control.Some numerical examples are presented to confirm the theoretical investigations.
基金This work was supported by JSPS KAKENHI Grant Nos.19K14590,21K18301,Japan.
文摘For fourth-order geometric evolution equations for planar curves with the dissipation of the bending energy,including the Willmore and the Helfrich flows,we consider a numerical approach.In this study,we construct a structure-preserving method based on a discrete variational derivative method.Furthermore,to prevent the vertex concentration that may lead to numerical instability,we discretely introduce Deckelnick’s tangential velocity.Here,a modification term is introduced in the process of adding tangential velocity.This modified term enables the method to reproduce the equations’properties while preventing vertex concentration.Numerical experiments demonstrate that the proposed approach captures the equations’properties with high accuracy and avoids the concentration of vertices.
基金supported by National Natural Science Foundation of China(Grant Nos.11261011,11271145 and 11031006)Foundation of Guizhou Science and Technology Department(Grant No.[2011]2098)+2 种基金Foundation for Talent Introduction of Guangdong Provincial UniversitySpecialized Research Fund for the Doctoral Program of Higher Education(Grant No. 20114407110009)the Project of Department of Education of Guangdong Province(Grant No. 2012KJCX0036)
文摘In this paper,optimize-then-discretize,variational discretization and the finite volume method are applied to solve the distributed optimal control problems governed by a second order hyperbolic equation.A semi-discrete optimal system is obtained.We prove the existence and uniqueness of the solution to the semidiscrete optimal system and obtain the optimal order error estimates in L ∞(J;L 2)-and L ∞(J;H 1)-norm.Numerical experiments are presented to test these theoretical results.
基金supported by National Natural Science Foundation of China(Grant No.11771312)。
文摘This paper analyzes two extended finite element methods(XFEMs)for linear quadratic optimal control problems governed by Poisson equation in non-convex domains.We follow the variational discretization concept to discretize the continuous problems,and apply an XFEM with a cut-off function and a classic XFEM with a fixed enrichment area to discretize the state and co-state equations.Optimal error estimates are derived for the state,co-state and control.Numerical results confirm our theoretical results.