This paper presents a novel design method for discrete-time repetitive control systems (RCS) based on two-dimensional (2D) discrete-time model. Firstly, the 2D model of an RCS is established by considering both th...This paper presents a novel design method for discrete-time repetitive control systems (RCS) based on two-dimensional (2D) discrete-time model. Firstly, the 2D model of an RCS is established by considering both the control action and the learning action in RCS. Then, through constructing a 2D state feedback controller, the design problem of the RCS is converted to the design problem of a 2D system. Then, using 2D system theory and linear matrix inequality (LMI) method, stability criterion is derived for the system without and with uncertainties, respectively. Parameters of the system can be determined by solving the LMI of the stability criterion. Finally, numerical simulations validate the effectiveness of the proposed method.展开更多
Objective:To analyze the effects of repetitive transcranial magnetic stimulation combined with motor control training on the treatment of stroke-induced hemiplegia,specifically focusing on the impact on patients’bala...Objective:To analyze the effects of repetitive transcranial magnetic stimulation combined with motor control training on the treatment of stroke-induced hemiplegia,specifically focusing on the impact on patients’balance function and gait.Methods:Fifty-two cases of hemiplegic stroke patients were randomly divided into two groups,26 in the control group and 26 in the observation group,using computer-generated random grouping.All participants underwent conventional treatment and rehabilitation training.In addition to these,the control group received repetitive transcranial magnetic pseudo-stimulation therapy+motor control training,while the observation group received repetitive transcranial magnetic stimulation therapy+motor control training.The balance function and gait parameters of both groups were compared before and after the interventions and assessed the satisfaction of the interventions in both groups.Results:Before the invention,there were no significant differences in balance function scores and each gait parameter between the two groups(P>0.05).However,after the intervention,the observation group showed higher balance function scores compared to the control group(P<0.05).The observation group also exhibited higher step speed and step frequency,longer step length,and a higher overall satisfaction level with the intervention compared to the control group(P<0.05).Conclusion:The combination of repetitive transcranial magnetic stimulation and motor control training in the treatment of stroke-induced hemiplegia has demonstrated positive effects.It not only improves the patient’s balance function and gait but also contributes to overall physical rehabilitation.展开更多
An all-digital hybrid current regulation scheme for the single-phase shunt active power filter (APF) is presented. The proposed hybrid current control scheme integrates the deadbeat control and the dual-mode structu...An all-digital hybrid current regulation scheme for the single-phase shunt active power filter (APF) is presented. The proposed hybrid current control scheme integrates the deadbeat control and the dual-mode structure repetitive control (DMRC) so that it can offer superior steady-state performance and good transient features. Unlike the conventional schemes, the proposed scheme-based APF can compensate both the odd and the even order harmonics in grid. The detailed design criteria and the stability analysis of the proposed hybrid current controller are presented. Moreover, an improved structure which incorporates the proposed hybrid controller and the resonant controller for tracking specific order harmonics is given. The relationships between the resonant controller and different repetitive control schemes are discussed. Experimental results verify the effectiveness and advantages of the proposed hybrid control scheme.展开更多
This study addresses the adaptive control and function projective synchronization problems between 2D Rulkov discrete-time system and Network discrete-time system. Based on backstepping design with three controllers, ...This study addresses the adaptive control and function projective synchronization problems between 2D Rulkov discrete-time system and Network discrete-time system. Based on backstepping design with three controllers, a systematic, concrete and automatic scheme is developed to investigate the function projective synchronization of discretetime chaotic systems. In addition, the adaptive control function is applied to achieve the state synchronization of two discrete-time systems. Numerical results demonstrate the effectiveness of the proposed control scheme.展开更多
The main contribution of this paper is to present stability synthesis results for discrete-time piecewise affine (PWA) systems with polytopic time-varying uncertainties and for discrete-time PWA systems with norm-bo...The main contribution of this paper is to present stability synthesis results for discrete-time piecewise affine (PWA) systems with polytopic time-varying uncertainties and for discrete-time PWA systems with norm-bounded uncertainties respectively.The basic idea of the proposed approaches is to construct piecewise-quadratic (PWQ) Lyapunov functions to guarantee the stability of the closed-loop systems.The partition information of the PWA systems is taken into account and each polytopic operating region is outer approximated by an ellipsoid,then sufficient conditions for the robust stabilization are derived and expressed as a set of linear matrix inequalities (LMIs).Two examples are given to illustrate the proposed theoretical results.展开更多
A novel discrete-time reaching law was proposed for uncertain discrete-time system,which contained process noise and measurement noise.The proposed method reserves all the advantages of discrete-time reaching law,whic...A novel discrete-time reaching law was proposed for uncertain discrete-time system,which contained process noise and measurement noise.The proposed method reserves all the advantages of discrete-time reaching law,which not only decreases the band width of sliding mode and strengthens the system robustness,but also improves the dynamic performance and stability capability of the system.Moreover,a discrete-time sliding mode control strategy based on Kalman filter method was designed,and Kalman filter was employed to eliminate the influence of system noise.Simulation results show that there is no chattering phenomenon in the output of controller and the state variables of controlled system,and the proposed algorithm is also feasible and has strong robustness to external disturbances.展开更多
Two approximation laws of sliding mode for discrete-time variable structure control systems are proposed to overcome the limitations of the exponential approximation law and the variable rate approximation law. By app...Two approximation laws of sliding mode for discrete-time variable structure control systems are proposed to overcome the limitations of the exponential approximation law and the variable rate approximation law. By applying the proposed approximation laws of sliding mode to discrete-time variable structure control systems, the stability of origin can be guaranteed, and the chattering along the switching surface caused by discrete-time variable structure control can be restrained effectively. In designing of approximation laws, the problem that the system control input is restricted is also considered, which is very important in practical systems. Finally a simulation example shows the effectiveness of the two approximation laws proposed.展开更多
A novel repetitive control strategy for the output waveform of single-phase CVCF inverters is presented. In this scheme, the inverse transfer function of inverter is used as a compensator to obtain stable and satisfy ...A novel repetitive control strategy for the output waveform of single-phase CVCF inverters is presented. In this scheme, the inverse transfer function of inverter is used as a compensator to obtain stable and satisfy harmonic rejection. Besides, PD controller is adopted to improve transient performance. Simulation and experimental results, which are gotten from a DSP-based 400Hz, 5.5KW inverter, indicate that the proposed control scheme can achieve not only low THD during steady-state operation but also fast transient response during load step change.展开更多
This paper focuses on the problem of non-fragile guaranteed cost control for a class of T-S discrete-time fuzzy bilinear systems(DFBS).Based on the parallel distributed compensation(PDC) approach,the sufficient co...This paper focuses on the problem of non-fragile guaranteed cost control for a class of T-S discrete-time fuzzy bilinear systems(DFBS).Based on the parallel distributed compensation(PDC) approach,the sufficient conditions are derived such that the closed-loop system is asymptotically stable and the cost function value is no more than a certain upper bound in the presence of the additive controller gain perturbations.The non-fragile guaranteed cost controller can be obtained by solving a set of bilinear matrix inequalities(BMIs).The Van de Vusse model is utilized to demonstrate the validity and effectiveness of the proposed approach.展开更多
The effect of combined low-frequency repetitive transcranial magnetic stimulation(LF r TMS) and virtual reality(VR) training in patients after stroke was assessed. In a double-blind randomized controlled trial, 11...The effect of combined low-frequency repetitive transcranial magnetic stimulation(LF r TMS) and virtual reality(VR) training in patients after stroke was assessed. In a double-blind randomized controlled trial, 112 patients with hemiplegia after stroke were randomly divided into two groups: experimental and control. In experimental group, the patients received LF r TMS and VR training treatment, and those in control group received sham r TMS and VR training treatment. Participants in both groups received therapy of 6 days per week for 4 weeks. The primary endpoint including the upper limb motor function test of Fugl-meyer assessment(U-FMA) and wolf motor function test(WMFT), and the secondary endpoint including modified Barthel index(MBI) and 36-item Short Form Health Survey Questionnaire(SF-36) were assessed before and 4 weeks after treatment. Totally, 108 subjects completed the study(55 in experimental group and 53 in control group respectively). After 4-week treatment, the U-FMA scores [mean difference of 13.2, 95% confidence interval(CI) 3.6 to 22.7, P〈0.01], WMFT scores(mean difference of 2.9, 95% CI 2.7 to 12.3, P〈0.01), and MBI scores(mean difference 16.1, 95% CI 3.8 to 9.4, P〈0.05) were significantly increased in the experimental group as compared with the control group. The results suggested the combined use of LF r TMS with VR training could effectively improve the upper limb function, the living activity, and the quality of life in patients with hemiplegia following subacute stroke, which may provide a better rehabilitation treatment for subacute stroke.展开更多
A new variable structure control algorithm based on sliding mode prediction for a class of discrete-time nonlinear systems is presented. By employing a special model to predict future sliding mode value, and combining...A new variable structure control algorithm based on sliding mode prediction for a class of discrete-time nonlinear systems is presented. By employing a special model to predict future sliding mode value, and combining feedback correction and receding horizon optimization methods which are extensively applied on predictive control strategy, a discrete-time variable structure control law is constructed. The closed-loop systems are proved to have robustness to uncertainties with unspecified boundaries. Numerical simulation and pendulum experiment results illustrate that the closed-loop systems possess desired performance, such as strong robustness, fast convergence and chattering elimination.展开更多
In this paper, both output-feedback iterative learning control(ILC) and repetitive learning control(RLC) schemes are proposed for trajectory tracking of nonlinear systems with state-dependent time-varying uncertaintie...In this paper, both output-feedback iterative learning control(ILC) and repetitive learning control(RLC) schemes are proposed for trajectory tracking of nonlinear systems with state-dependent time-varying uncertainties. An iterative learning controller, together with a state observer and a fully-saturated learning mechanism, through Lyapunov-like synthesis, is designed to deal with time-varying parametric uncertainties. The estimations for outputs, instead of system outputs themselves, are applied to form the error equation, which helps to establish convergence of the system outputs to the desired ones. This method is then extended to repetitive learning controller design. The boundedness of all the signals in the closed-loop is guaranteed and asymptotic convergence of both the state estimation error and the tracking error is established in both cases of ILC and RLC. Numerical results are presented to verify the effectiveness of the proposed methods.展开更多
The problem of designing fuzzy static output feedback controller for T-S discrete-time fuzzy bilinear system (DFBS) is presented. Based on parallel distribution compensation method, some sufficient conditions are de...The problem of designing fuzzy static output feedback controller for T-S discrete-time fuzzy bilinear system (DFBS) is presented. Based on parallel distribution compensation method, some sufficient conditions are derived to guarantee the stability of the overall fuzzy system. The stabilization conditions are further formulated into linear matrix inequality (LMI) so that the desired controller can be easily obtained by using the Matlab LMI toolbox. In comparison with the existing results, the drawbacks, such as coordinate transformation, same output matrices, have been elim- inated. Finally, a simulation example shows that the approach is effective.展开更多
The decentralized H-infinity control problem for discrete-time singular large-scale systems is considered. Based on the bounded real lemma of discrete-time singular systems, a sufficient condition for the existence of...The decentralized H-infinity control problem for discrete-time singular large-scale systems is considered. Based on the bounded real lemma of discrete-time singular systems, a sufficient condition for the existence of decentralized H-infinity controller for discrete-time singular large-scale systems is presented in terms of the solvability to a certain system of linear matrix inequalities by linear matrix inequality (LMI) approach, and the feasible solutions to the system of LMIs provide a parameterized representation of a set of decentralized H-infinity controller. The given example shows the application of the method.展开更多
For a class of discrete-time systems with unmodeled dynamics and bounded disturbance, the design and analysis of robust indirect model reference adaptive control (MRAC) with normalized adaptive law are investigated....For a class of discrete-time systems with unmodeled dynamics and bounded disturbance, the design and analysis of robust indirect model reference adaptive control (MRAC) with normalized adaptive law are investigated. The main work includes three parts. Firstly, it is shown that the constructed parameter estimation algorithm not only possesses the same properties as those of traditional estimation algorithms, but also avoids the possibility of division by zero. Secondly, by establishing a relationship between the plant parameter estimate and the controller parameter estimate, some similar properties of the latter are also established. Thirdly, by using the relationship between the normalizing signal and all the signals of the closed-loop system, and some important mathematical tools on discrete-time systems, as in the continuous-time case, a systematic stability and robustness analysis approach to the discrete indirect robust MRAC scheme is developed rigorously.展开更多
The robust reliable H∞ control problem for discrete-time Markovian jump systems with actuator failures is studied. A more practical model of actuator failures than outage is considered. Based on the state feedback me...The robust reliable H∞ control problem for discrete-time Markovian jump systems with actuator failures is studied. A more practical model of actuator failures than outage is considered. Based on the state feedback method, the resulting closed-loop systems are reliable in that they remain robust stochastically stable and satisfy a certain level of H∞ disturbance attenuation not only when all actuators are operational, but also in case of some actuator failures, The solvability condition of controllers can be equivalent to a feasibility problem of coupled linear matrix inequalities (LMIs). A numerical example is also given to illustrate the design procedures and their effectiveness.展开更多
The robust H∞ control problem for discrete-time uncertain systems is investigated in this paper. The uncertain systems are modelled as a polytopic type with linear fractional uncertainty in the vertices. A new linear...The robust H∞ control problem for discrete-time uncertain systems is investigated in this paper. The uncertain systems are modelled as a polytopic type with linear fractional uncertainty in the vertices. A new linear matrix inequality (LMI) characterization of the H∞ performance for discrete systems is given by introducing a matrix slack variable which decouples the matrix of a Lyapunov function candidate and the parametric matrices of the system. This feature enables one to derive sufficient conditions for discrete uncertain systems by using parameter-dependent Lyapunov functions with less conservativeness. Based on the result, H∞ performance analysis and controller design are carried out. A numerical example is included to demonstrate the effectiveness of the proposed results.展开更多
In this paper, the robust H∞ control problem for uncertain discrete-time systems with time-varying state delay is con- sidered. Based on the Lyapunov functional method, and by resorting to the new technique for estim...In this paper, the robust H∞ control problem for uncertain discrete-time systems with time-varying state delay is con- sidered. Based on the Lyapunov functional method, and by resorting to the new technique for estimating the upper bound of the difference of the Lyapunov functional, a new less conservative sufficient condition for the existence of a robust H∞ controller is obtained. Moreover, the cone complementary linearisation procedure is employed to solve the nonconvex feasibility problem. Finally, several numerical examples are presented to show the effectiveness and less conservativeness of the proposed method.展开更多
In order to suppress the periodic interference of the continuous rotary electro-hydraulic servo motor,this paper makes the motor tracking the periodic signals with high accuracy,and improves the influence of friction ...In order to suppress the periodic interference of the continuous rotary electro-hydraulic servo motor,this paper makes the motor tracking the periodic signals with high accuracy,and improves the influence of friction interference to the performance of continuous rotary electro-hydraulic servo motor.The mathematic model of the electro-hydraulic position servo system of the continuous rotary motor was established,and the compound control method was adopted based on the repetitive control,feed forward and PID to suppress the friction interference.Through the simulation,the result confirms that the compound control method decreases the tracking error of the system,increases the robust performance of the system and improves the performance of the continuous rotary electro-hydraulic servo motor.展开更多
Formation control of discrete-time linear multi-agent systems using directed switching topology is considered in this work via a reduced-order observer, in which a formation control protocol is proposed under the assu...Formation control of discrete-time linear multi-agent systems using directed switching topology is considered in this work via a reduced-order observer, in which a formation control protocol is proposed under the assumption that each directed communication topology has a directed spanning tree. By utilizing the relative outputs of neighboring agents, a reduced-order observer is designed for each following agent. A multi-step control algorithm is established based on the Lyapunov method and the modified discrete-time algebraic Riccati equation. A sufficient condition is given to ensure that the discrete-time linear multi-agent system can achieve the expected leader-following formation.Finally, numerical examples are provided so as to demonstrate the effectiveness of the obtained results.展开更多
基金supported by National Natural Science Foundation of China (Nos. 60974045 and 60674016)the Research Foundation of Education Bureau of Hunan Province, China (No. 08C090)
文摘This paper presents a novel design method for discrete-time repetitive control systems (RCS) based on two-dimensional (2D) discrete-time model. Firstly, the 2D model of an RCS is established by considering both the control action and the learning action in RCS. Then, through constructing a 2D state feedback controller, the design problem of the RCS is converted to the design problem of a 2D system. Then, using 2D system theory and linear matrix inequality (LMI) method, stability criterion is derived for the system without and with uncertainties, respectively. Parameters of the system can be determined by solving the LMI of the stability criterion. Finally, numerical simulations validate the effectiveness of the proposed method.
文摘Objective:To analyze the effects of repetitive transcranial magnetic stimulation combined with motor control training on the treatment of stroke-induced hemiplegia,specifically focusing on the impact on patients’balance function and gait.Methods:Fifty-two cases of hemiplegic stroke patients were randomly divided into two groups,26 in the control group and 26 in the observation group,using computer-generated random grouping.All participants underwent conventional treatment and rehabilitation training.In addition to these,the control group received repetitive transcranial magnetic pseudo-stimulation therapy+motor control training,while the observation group received repetitive transcranial magnetic stimulation therapy+motor control training.The balance function and gait parameters of both groups were compared before and after the interventions and assessed the satisfaction of the interventions in both groups.Results:Before the invention,there were no significant differences in balance function scores and each gait parameter between the two groups(P>0.05).However,after the intervention,the observation group showed higher balance function scores compared to the control group(P<0.05).The observation group also exhibited higher step speed and step frequency,longer step length,and a higher overall satisfaction level with the intervention compared to the control group(P<0.05).Conclusion:The combination of repetitive transcranial magnetic stimulation and motor control training in the treatment of stroke-induced hemiplegia has demonstrated positive effects.It not only improves the patient’s balance function and gait but also contributes to overall physical rehabilitation.
基金The National Basic Research Program of China(973 Program)(No.2013CB035603)the National Natural Science Foundation of China(No.51007008,51137001)+1 种基金the Ph.D.Programs Foundation of Ministry of Education of China(No.20100092120043)the Fundamental Research Funds for the Central Universities
文摘An all-digital hybrid current regulation scheme for the single-phase shunt active power filter (APF) is presented. The proposed hybrid current control scheme integrates the deadbeat control and the dual-mode structure repetitive control (DMRC) so that it can offer superior steady-state performance and good transient features. Unlike the conventional schemes, the proposed scheme-based APF can compensate both the odd and the even order harmonics in grid. The detailed design criteria and the stability analysis of the proposed hybrid current controller are presented. Moreover, an improved structure which incorporates the proposed hybrid controller and the resonant controller for tracking specific order harmonics is given. The relationships between the resonant controller and different repetitive control schemes are discussed. Experimental results verify the effectiveness and advantages of the proposed hybrid control scheme.
基金supported by the Natural Science Foundation of China under Grant Nos.10747141 and 10735030Zhejiang Provincial Natural Science Foundation under Grant No.605408+3 种基金Ningbo Natural Science Foundation under Grant Nos.2007A610049 and 2008A61001National Basic Research Program of China (973 Program 2007CB814800)Programme for Changjiang Scholars and Innovative Research Team in University (IRT0734)K.C.Wong Magna Fund in Ningbo University
文摘This study addresses the adaptive control and function projective synchronization problems between 2D Rulkov discrete-time system and Network discrete-time system. Based on backstepping design with three controllers, a systematic, concrete and automatic scheme is developed to investigate the function projective synchronization of discretetime chaotic systems. In addition, the adaptive control function is applied to achieve the state synchronization of two discrete-time systems. Numerical results demonstrate the effectiveness of the proposed control scheme.
基金supported by the National Science Fund of China for Distinguished Young Scholars(No.60725311)
文摘The main contribution of this paper is to present stability synthesis results for discrete-time piecewise affine (PWA) systems with polytopic time-varying uncertainties and for discrete-time PWA systems with norm-bounded uncertainties respectively.The basic idea of the proposed approaches is to construct piecewise-quadratic (PWQ) Lyapunov functions to guarantee the stability of the closed-loop systems.The partition information of the PWA systems is taken into account and each polytopic operating region is outer approximated by an ellipsoid,then sufficient conditions for the robust stabilization are derived and expressed as a set of linear matrix inequalities (LMIs).Two examples are given to illustrate the proposed theoretical results.
基金Project(50721063) supported by the National Natural Science Foundation of China
文摘A novel discrete-time reaching law was proposed for uncertain discrete-time system,which contained process noise and measurement noise.The proposed method reserves all the advantages of discrete-time reaching law,which not only decreases the band width of sliding mode and strengthens the system robustness,but also improves the dynamic performance and stability capability of the system.Moreover,a discrete-time sliding mode control strategy based on Kalman filter method was designed,and Kalman filter was employed to eliminate the influence of system noise.Simulation results show that there is no chattering phenomenon in the output of controller and the state variables of controlled system,and the proposed algorithm is also feasible and has strong robustness to external disturbances.
基金This work was supported by the National Natural Science Foundation of China (No.60274099) and the Foundation of Key Laboratory of Process Industry Automation, Ministry of Education
文摘Two approximation laws of sliding mode for discrete-time variable structure control systems are proposed to overcome the limitations of the exponential approximation law and the variable rate approximation law. By applying the proposed approximation laws of sliding mode to discrete-time variable structure control systems, the stability of origin can be guaranteed, and the chattering along the switching surface caused by discrete-time variable structure control can be restrained effectively. In designing of approximation laws, the problem that the system control input is restricted is also considered, which is very important in practical systems. Finally a simulation example shows the effectiveness of the two approximation laws proposed.
基金This work was supported by the National Natural Science Foundation of China (No. 50007004)
文摘A novel repetitive control strategy for the output waveform of single-phase CVCF inverters is presented. In this scheme, the inverse transfer function of inverter is used as a compensator to obtain stable and satisfy harmonic rejection. Besides, PD controller is adopted to improve transient performance. Simulation and experimental results, which are gotten from a DSP-based 400Hz, 5.5KW inverter, indicate that the proposed control scheme can achieve not only low THD during steady-state operation but also fast transient response during load step change.
基金supported by the National Natural Science Foundation of China(60374015)
文摘This paper focuses on the problem of non-fragile guaranteed cost control for a class of T-S discrete-time fuzzy bilinear systems(DFBS).Based on the parallel distributed compensation(PDC) approach,the sufficient conditions are derived such that the closed-loop system is asymptotically stable and the cost function value is no more than a certain upper bound in the presence of the additive controller gain perturbations.The non-fragile guaranteed cost controller can be obtained by solving a set of bilinear matrix inequalities(BMIs).The Van de Vusse model is utilized to demonstrate the validity and effectiveness of the proposed approach.
文摘The effect of combined low-frequency repetitive transcranial magnetic stimulation(LF r TMS) and virtual reality(VR) training in patients after stroke was assessed. In a double-blind randomized controlled trial, 112 patients with hemiplegia after stroke were randomly divided into two groups: experimental and control. In experimental group, the patients received LF r TMS and VR training treatment, and those in control group received sham r TMS and VR training treatment. Participants in both groups received therapy of 6 days per week for 4 weeks. The primary endpoint including the upper limb motor function test of Fugl-meyer assessment(U-FMA) and wolf motor function test(WMFT), and the secondary endpoint including modified Barthel index(MBI) and 36-item Short Form Health Survey Questionnaire(SF-36) were assessed before and 4 weeks after treatment. Totally, 108 subjects completed the study(55 in experimental group and 53 in control group respectively). After 4-week treatment, the U-FMA scores [mean difference of 13.2, 95% confidence interval(CI) 3.6 to 22.7, P〈0.01], WMFT scores(mean difference of 2.9, 95% CI 2.7 to 12.3, P〈0.01), and MBI scores(mean difference 16.1, 95% CI 3.8 to 9.4, P〈0.05) were significantly increased in the experimental group as compared with the control group. The results suggested the combined use of LF r TMS with VR training could effectively improve the upper limb function, the living activity, and the quality of life in patients with hemiplegia following subacute stroke, which may provide a better rehabilitation treatment for subacute stroke.
基金This work is supported by the National Natural Science Foundation of China (No.60421002) Priority supported financially by the New Century 151 Talent Project of Zhejiang Province.
文摘A new variable structure control algorithm based on sliding mode prediction for a class of discrete-time nonlinear systems is presented. By employing a special model to predict future sliding mode value, and combining feedback correction and receding horizon optimization methods which are extensively applied on predictive control strategy, a discrete-time variable structure control law is constructed. The closed-loop systems are proved to have robustness to uncertainties with unspecified boundaries. Numerical simulation and pendulum experiment results illustrate that the closed-loop systems possess desired performance, such as strong robustness, fast convergence and chattering elimination.
基金supported by the Third Level of Hangzhou 131 Young Talent Cultivation Plan Funding2018 Soft Science Research Project of Zhejiang Provincial Science and Technology Department Zhejiang Province Construction and participate in the“The Belt and Road”Technology Innovation Community Path Research(2018C35029)
文摘In this paper, both output-feedback iterative learning control(ILC) and repetitive learning control(RLC) schemes are proposed for trajectory tracking of nonlinear systems with state-dependent time-varying uncertainties. An iterative learning controller, together with a state observer and a fully-saturated learning mechanism, through Lyapunov-like synthesis, is designed to deal with time-varying parametric uncertainties. The estimations for outputs, instead of system outputs themselves, are applied to form the error equation, which helps to establish convergence of the system outputs to the desired ones. This method is then extended to repetitive learning controller design. The boundedness of all the signals in the closed-loop is guaranteed and asymptotic convergence of both the state estimation error and the tracking error is established in both cases of ILC and RLC. Numerical results are presented to verify the effectiveness of the proposed methods.
文摘The problem of designing fuzzy static output feedback controller for T-S discrete-time fuzzy bilinear system (DFBS) is presented. Based on parallel distribution compensation method, some sufficient conditions are derived to guarantee the stability of the overall fuzzy system. The stabilization conditions are further formulated into linear matrix inequality (LMI) so that the desired controller can be easily obtained by using the Matlab LMI toolbox. In comparison with the existing results, the drawbacks, such as coordinate transformation, same output matrices, have been elim- inated. Finally, a simulation example shows that the approach is effective.
基金supported by the National Natural Science Foundation of China (No.60874007)
文摘The decentralized H-infinity control problem for discrete-time singular large-scale systems is considered. Based on the bounded real lemma of discrete-time singular systems, a sufficient condition for the existence of decentralized H-infinity controller for discrete-time singular large-scale systems is presented in terms of the solvability to a certain system of linear matrix inequalities by linear matrix inequality (LMI) approach, and the feasible solutions to the system of LMIs provide a parameterized representation of a set of decentralized H-infinity controller. The given example shows the application of the method.
基金supported by National Natural Science Foundation of China (No. 60774010, 10971256, 60974028)Natural Science Foundation of Jiangsu Province (No. BK2009083)+2 种基金Program for Fundamental Research of Natural Sciences in Universities of Jiangsu Province(No. 07KJB510114)Shandong Provincial Natural Science Foundation of China (No. ZR2009GM008)Natural Science Foundation of Jining University (No. 2009KJLX02)
文摘For a class of discrete-time systems with unmodeled dynamics and bounded disturbance, the design and analysis of robust indirect model reference adaptive control (MRAC) with normalized adaptive law are investigated. The main work includes three parts. Firstly, it is shown that the constructed parameter estimation algorithm not only possesses the same properties as those of traditional estimation algorithms, but also avoids the possibility of division by zero. Secondly, by establishing a relationship between the plant parameter estimate and the controller parameter estimate, some similar properties of the latter are also established. Thirdly, by using the relationship between the normalizing signal and all the signals of the closed-loop system, and some important mathematical tools on discrete-time systems, as in the continuous-time case, a systematic stability and robustness analysis approach to the discrete indirect robust MRAC scheme is developed rigorously.
基金the National Natural Science Foundation of China (60574001)Program for New Century Excellent Talents in University (05-0485)Program for Innovative Research Team of Jiangnan University
文摘The robust reliable H∞ control problem for discrete-time Markovian jump systems with actuator failures is studied. A more practical model of actuator failures than outage is considered. Based on the state feedback method, the resulting closed-loop systems are reliable in that they remain robust stochastically stable and satisfy a certain level of H∞ disturbance attenuation not only when all actuators are operational, but also in case of some actuator failures, The solvability condition of controllers can be equivalent to a feasibility problem of coupled linear matrix inequalities (LMIs). A numerical example is also given to illustrate the design procedures and their effectiveness.
基金This work was partially supported by RGC Grant 7103/01P and the open project of the state key Laboratory of intelligent and Systems,Tsinghua University(No.0406).
文摘The robust H∞ control problem for discrete-time uncertain systems is investigated in this paper. The uncertain systems are modelled as a polytopic type with linear fractional uncertainty in the vertices. A new linear matrix inequality (LMI) characterization of the H∞ performance for discrete systems is given by introducing a matrix slack variable which decouples the matrix of a Lyapunov function candidate and the parametric matrices of the system. This feature enables one to derive sufficient conditions for discrete uncertain systems by using parameter-dependent Lyapunov functions with less conservativeness. Based on the result, H∞ performance analysis and controller design are carried out. A numerical example is included to demonstrate the effectiveness of the proposed results.
基金supported by National Natural Science Foundationof China (No. 60850004)
文摘In this paper, the robust H∞ control problem for uncertain discrete-time systems with time-varying state delay is con- sidered. Based on the Lyapunov functional method, and by resorting to the new technique for estimating the upper bound of the difference of the Lyapunov functional, a new less conservative sufficient condition for the existence of a robust H∞ controller is obtained. Moreover, the cone complementary linearisation procedure is employed to solve the nonconvex feasibility problem. Finally, several numerical examples are presented to show the effectiveness and less conservativeness of the proposed method.
基金supported by the Postdoctoral Project of Heilongjiang Province
文摘In order to suppress the periodic interference of the continuous rotary electro-hydraulic servo motor,this paper makes the motor tracking the periodic signals with high accuracy,and improves the influence of friction interference to the performance of continuous rotary electro-hydraulic servo motor.The mathematic model of the electro-hydraulic position servo system of the continuous rotary motor was established,and the compound control method was adopted based on the repetitive control,feed forward and PID to suppress the friction interference.Through the simulation,the result confirms that the compound control method decreases the tracking error of the system,increases the robust performance of the system and improves the performance of the continuous rotary electro-hydraulic servo motor.
基金supported by National Natural Science Foundation of China(61573200,61973175)the Fundamental Research Funds for the Central Universities,Nankai University(63201196)。
文摘Formation control of discrete-time linear multi-agent systems using directed switching topology is considered in this work via a reduced-order observer, in which a formation control protocol is proposed under the assumption that each directed communication topology has a directed spanning tree. By utilizing the relative outputs of neighboring agents, a reduced-order observer is designed for each following agent. A multi-step control algorithm is established based on the Lyapunov method and the modified discrete-time algebraic Riccati equation. A sufficient condition is given to ensure that the discrete-time linear multi-agent system can achieve the expected leader-following formation.Finally, numerical examples are provided so as to demonstrate the effectiveness of the obtained results.