This paper gives a mathematical definition for the "caution" and "probing", and presents a decomposition theorem for nonlinear discrete-time stochastic systems. Under some assumptions, the problem ...This paper gives a mathematical definition for the "caution" and "probing", and presents a decomposition theorem for nonlinear discrete-time stochastic systems. Under some assumptions, the problem of finding the closed-loop optimal control can be decomposed into three problems: the deterministic optimal feedback, cautious optimal and probing optimal control problems.展开更多
Stationarity of a class of stochastically interconnecteil discrete-timesystems is analyzed by utilizins results from ergodic theory of general stateMarkov chains, incorporated with the so called large-scale system app...Stationarity of a class of stochastically interconnecteil discrete-timesystems is analyzed by utilizins results from ergodic theory of general stateMarkov chains, incorporated with the so called large-scale system approach.展开更多
In this paper, the optimal viability decision problem of linear discrete-time stochastic systems with probability criterion is investigated. Under the condition of sequence-reachable discrete-time dynamic systems, the...In this paper, the optimal viability decision problem of linear discrete-time stochastic systems with probability criterion is investigated. Under the condition of sequence-reachable discrete-time dynamic systems, the existence theorem of optimal viability strategy is given and the solving procedure of the optimal strategy is provided based on dynamic programming. A numerical example shows the effectiveness of the proposed methods.展开更多
Almost estimators are designed for the white observation noise. In the estimation problems, rather than the white observation noise, there might be actual cases where the observation noise is modeled by the colored no...Almost estimators are designed for the white observation noise. In the estimation problems, rather than the white observation noise, there might be actual cases where the observation noise is modeled by the colored noise process. This paper examines to design a new estimation technique of recursive least-squares (RLS) Wiener fixed-point smoother and filter for colored observation noise in linear discrete-time wide-sense stationary stochastic systems. The observation y(k) is given as the sum of the signal z(k)=Hx(k) and the colored observation noise vc(k). The RLS Wiener estimators explicitly require the following information: 1) the system matrix for the state vector x(k);2) the observation matrix H;3) the variance of the state vector x(k);4) the system matrix for the colored observation noise vc(k);5) the variance of the colored observation noise;6) the input noise variance in the state equation for the colored observation noise.展开更多
This paper proposes recursive least-squares (RLS) l-step ahead predictor and filtering algorithms with uncertain observations in linear discrete-time stochastic systems. The observation equation is given by y(k)=y(k)z...This paper proposes recursive least-squares (RLS) l-step ahead predictor and filtering algorithms with uncertain observations in linear discrete-time stochastic systems. The observation equation is given by y(k)=y(k)z(k)+v(k), z(k)=Hx(k), where {y(k)} is a binary switching sequence with conditional probability. The estimators require the information of the system state-transition matrix Ф, the observation matrix H, the variance K(k,k) of the state vector x(k), the variance R(k) of the observation noise, the probability p(k)=p{y(k)=1} that the signal exists in the uncertain observation equation and the (2,2) element [p(k|j)]2,2 of the conditional probability of y(k), given y(j).展开更多
This paper studies deterministic and stochastic fixedtime stability of autonomous nonlinear discrete-time(DT)systems.Lyapunov conditions are first presented under which the fixed-time stability of deterministic DT sys...This paper studies deterministic and stochastic fixedtime stability of autonomous nonlinear discrete-time(DT)systems.Lyapunov conditions are first presented under which the fixed-time stability of deterministic DT systems is certified.Extensions to systems under deterministic perturbations as well as stochastic noise are then considered.For the former,sensitivity to perturbations for fixed-time stable DT systems is analyzed,and it is shown that fixed-time attractiveness results from the presented Lyapunov conditions.For the latter,sufficient Lyapunov conditions for fixed-time stability in probability of nonlinear stochastic DT systems are presented.The fixed upper bound of the settling-time function is derived for both fixed-time stable and fixed-time attractive systems,and a stochastic settling-time function fixed upper bound is derived for stochastic DT systems.Illustrative examples are given along with simulation results to verify the introduced results.展开更多
This paper addresses the problem of event-triggered finite-time H<sub>∞</sub> filter design for a class of discrete-time nonlinear stochastic systems with exogenous disturbances. The stochastic Lyapunov-K...This paper addresses the problem of event-triggered finite-time H<sub>∞</sub> filter design for a class of discrete-time nonlinear stochastic systems with exogenous disturbances. The stochastic Lyapunov-Krasoviskii functional method is adopted to design a filter such that the filtering error system is stochastic finite-time stable (SFTS) and preserves a prescribed performance level according to the pre-defined event-triggered criteria. Based on stochastic differential equations theory, some sufficient conditions for the existence of H<sub>∞</sub> filter are obtained for the suggested system by employing linear matrix inequality technique. Finally, the desired H<sub>∞</sub> filter gain matrices can be expressed in an explicit form.展开更多
A stabilization problem for stochastic systems with multiple input delays is investigated herein.A new method to construct an optimal control problem with input constraints is adopted.A sufficient stabilization condit...A stabilization problem for stochastic systems with multiple input delays is investigated herein.A new method to construct an optimal control problem with input constraints is adopted.A sufficient stabilization condition is established via Riccati-type equations,whose verification is computationally simple because the variable dimension of the equations does not increase with regard to the delay.A stabilization controller is proposed,and it is a feedback of the state and a history input.This controller uses less history information than those with distributed terms.Two numerical examples illustrate the effectiveness of the obtained results.展开更多
This paper deals with the infinite horizon linear quadratic (LQ) differential games for discrete-time stochas- tic systems with both state and control dependent noise. The Popov-Belevitch-Hautus (PBH) criteria for...This paper deals with the infinite horizon linear quadratic (LQ) differential games for discrete-time stochas- tic systems with both state and control dependent noise. The Popov-Belevitch-Hautus (PBH) criteria for exact observability and exact detectability of discrete-time stochastic systems are presented. By means of them, we give the optimal strategies (Nash equilibrium strategies) and the optimal cost values for infinite horizon stochastic differential games. It indicates that the infinite horizon LQ stochastic differential gaines are associated with four coupled matrix-valued equations. Further- more, an iterative algorithm is proposed to solve the four coupled equations. Finally, an example is given to demonstrate our results.展开更多
In traditional finite-temperature Kohn–Sham density functional theory(KSDFT),the partial occupation of a large number of high-energy KS eigenstates restricts the use of first-principles molecular dynamics methods at ...In traditional finite-temperature Kohn–Sham density functional theory(KSDFT),the partial occupation of a large number of high-energy KS eigenstates restricts the use of first-principles molecular dynamics methods at extremely high temperatures.However,stochastic density functional theory(SDFT)can overcome this limitation.Recently,SDFT and the related mixed stochastic–deterministic density functional theory,based on a plane-wave basis set,have been implemented in the first-principles electronic structure software ABACUS[Q.Liu and M.Chen,Phys.Rev.B 106,125132(2022)].In this study,we combine SDFT with the Born–Oppenheimer molecular dynamics method to investigate systems with temperatures ranging from a few tens of eV to 1000 eV.Importantly,we train machine-learning-based interatomic models using the SDFT data and employ these deep potential models to simulate large-scale systems with long trajectories.Subsequently,we compute and analyze the structural properties,dynamic properties,and transport coefficients of warm dense matter.展开更多
Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currentl...Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY sho rt-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/12.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods.展开更多
The Mean First-Passage Time (MFPT) and Stochastic Resonance (SR) of a stochastic tumor-immune model withnoise perturbation are discussed in this paper. Firstly, considering environmental perturbation, Gaussian whiteno...The Mean First-Passage Time (MFPT) and Stochastic Resonance (SR) of a stochastic tumor-immune model withnoise perturbation are discussed in this paper. Firstly, considering environmental perturbation, Gaussian whitenoise and Gaussian colored noise are introduced into a tumor growth model under immune surveillance. Asfollows, the long-time evolution of the tumor characterized by the Stationary Probability Density (SPD) and MFPTis obtained in theory on the basis of the Approximated Fokker-Planck Equation (AFPE). Herein the recurrenceof the tumor from the extinction state to the tumor-present state is more concerned in this paper. A moreefficient algorithmof Back-Propagation Neural Network (BPNN) is utilized in order to testify the correction of thetheoretical SPDandMFPT.With the existence of aweak signal, the functional relationship between Signal-to-NoiseRatio (SNR), noise intensities and correlation time is also studied. Numerical results show that both multiplicativeGaussian colored noise and additive Gaussian white noise can promote the extinction of the tumors, and themultiplicative Gaussian colored noise can lead to the resonance-like peak on MFPT curves, while the increasingintensity of the additiveGaussian white noise results in theminimum of MFPT. In addition, the correlation timesare negatively correlated with MFPT. As for the SNR, we find the intensities of both the Gaussian white noise andthe Gaussian colored noise, as well as their correlation intensity can induce SR. Especially, SNR is monotonouslyincreased in the case ofGaussian white noisewith the change of the correlation time.At last, the optimal parametersin BPNN structure are analyzed for MFPT from three aspects: the penalty factors, the number of neural networklayers and the number of nodes in each layer.展开更多
In this paper,the recursive filtering problem is considered for stochastic systems over filter-and-forward successive relay(FFSR)networks.An FFSR is located between the sensor and the remote filter to forward the meas...In this paper,the recursive filtering problem is considered for stochastic systems over filter-and-forward successive relay(FFSR)networks.An FFSR is located between the sensor and the remote filter to forward the measurement.In the successive relay,two cooperative relay nodes are adopted to forward the signals alternatively,thereby existing switching characteristics and inter-relay interferences(IRI).Since the filter-and-forward scheme is employed,the signal received by the relay is retransmitted after it passes through a linear filter.The objective of the paper is to concurrently design optimal recursive filters for FFSR and stochastic systems against switching characteristics and IRI of relays.First,a uniform measurement model is proposed by analyzing the transmission mechanism of FFSR.Then,novel filter structures with switching parameters are constructed for both FFSR and stochastic systems.With the help of the inductive method,filtering error covariances are presented in the form of coupled difference equations.Next,the desired filter gain matrices are further obtained by minimizing the trace of filtering error covariances.Moreover,the stability performance of the filtering algorithm is analyzed where the uniform bound is guaranteed on the filtering error covariance.Finally,the effectiveness of the proposed filtering method over FFSR is verified by a three-order resistance-inductance-capacitance circuit system.展开更多
Dear Editor,This letter addresses the synchronization problem of a class of delayed stochastic complex dynamical networks consisting of multiple drive and response nodes.The aim is to achieve mean square exponential s...Dear Editor,This letter addresses the synchronization problem of a class of delayed stochastic complex dynamical networks consisting of multiple drive and response nodes.The aim is to achieve mean square exponential synchronization for the drive-response nodes despite the simultaneous presence of time delays and stochastic noises in node dynamics.展开更多
Dear Editor,This letter investigates a partially-observed optimal control problem for backward stochastic differential delay equations(BSDDEs).By utilizing Girsanov’s theory and convex variational method,we obtain a ...Dear Editor,This letter investigates a partially-observed optimal control problem for backward stochastic differential delay equations(BSDDEs).By utilizing Girsanov’s theory and convex variational method,we obtain a maximum principle on the assumption that the state equation contains time delay and the control domain is convex.The adjoint processes can be represented as the solutions of certain time-advanced stochastic differential equations in finite-dimensional spaces.Linear backward stochastic differential equation(BSDE)was first introduced by Bismut in[1],while general BSDE was given by Pardoux and Peng[2].Since then,the theory of BSDEs developed rapidly.The corresponding optimal control problems,whose states are driven by BSDEs,have also been widely studied by some authors,see[3]-[5].展开更多
In this paper we study optimal advertising problems that model the introduction of a new product into the market in the presence of carryover effects of the advertisement and with memory effects in the level of goodwi...In this paper we study optimal advertising problems that model the introduction of a new product into the market in the presence of carryover effects of the advertisement and with memory effects in the level of goodwill. In particular, we let the dynamics of the product goodwill to depend on the past, and also on past advertising efforts. We treat the problem by means of the stochastic Pontryagin maximum principle, that here is considered for a class of problems where in the state equation either the state or the control depend on the past. Moreover the control acts on the martingale term and the space of controls U can be chosen to be non-convex but now the space of controls U can be chosen to be non-convex. The maximum principle is thus formulated using a first-order adjoint Backward Stochastic Differential Equations (BSDEs), which can be explicitly computed due to the specific characteristics of the model, and a second-order adjoint relation.展开更多
In this paper,we consider the high order method for solving the linear transport equations under diffusive scaling and with random inputs.To tackle the randomness in the problem,the stochastic Galerkin method of the g...In this paper,we consider the high order method for solving the linear transport equations under diffusive scaling and with random inputs.To tackle the randomness in the problem,the stochastic Galerkin method of the generalized polynomial chaos approach has been employed.Besides,the high order implicit-explicit scheme under the micro-macro decomposition framework and the discontinuous Galerkin method have been employed.We provide several numerical experiments to validate the accuracy and the stochastic asymptotic-preserving property.展开更多
Stochastic resonance(SR) is investigated in an underdamped tri-stable potential system driven by Gaussian colored noise and a periodic excitation, where both displacement and velocity time-delayed states feedback are ...Stochastic resonance(SR) is investigated in an underdamped tri-stable potential system driven by Gaussian colored noise and a periodic excitation, where both displacement and velocity time-delayed states feedback are considered. It is challenging to study SR in a second-order delayed multi-stable system analytically. In this paper, the improved energy envelope stochastic average method is developed to derive the analytical expressions of stationary probability density(SPD)and spectral amplification. The effects of noise intensity, damping coefficient, and time delay on SR are analyzed. The results show that the shapes of joint SPD can be adjusted to the desired structure by choosing the time delay and feedback gains. For fixed time delay, the SR peak is increased for negative displacement or velocity feedback gain. Meanwhile, the SR peak is decreased while the optimal noise intensity increases with increasing correlation time of noise. The Monte Carlo simulations(MCS) confirm the effectiveness of the theoretical results.展开更多
This paper investigates logical stochastic resonance(LSR)in a cross-bifurcation non-smooth system driven by Gaussian colored noise.In this system,a bifurcation parameter triggers a transition between monostability,bis...This paper investigates logical stochastic resonance(LSR)in a cross-bifurcation non-smooth system driven by Gaussian colored noise.In this system,a bifurcation parameter triggers a transition between monostability,bistability and tristability.By using Novikov's theorem and the unified colored noise approximation method,the approximate Fokker-Planck equation is obtained.Then we derive the generalized potential function and the transition rates to analyze the LSR phenomenon using numerical simulations.We simulate the logic operation of the system in the bistable and tristable regions respectively.We assess the impact of Gaussian colored noise on the LSR and discover that the reliability of the logic response depends on the noise strength and the bifurcation parameter.Furthermore,it is found that the bistable region has a more extensive parameter range to produce reliable logic operation compared with the tristable region,since the tristable region is more sensitive to noise than the bistable one.展开更多
文摘This paper gives a mathematical definition for the "caution" and "probing", and presents a decomposition theorem for nonlinear discrete-time stochastic systems. Under some assumptions, the problem of finding the closed-loop optimal control can be decomposed into three problems: the deterministic optimal feedback, cautious optimal and probing optimal control problems.
文摘Stationarity of a class of stochastically interconnecteil discrete-timesystems is analyzed by utilizins results from ergodic theory of general stateMarkov chains, incorporated with the so called large-scale system approach.
基金supported by the National Natural Science Foundation of China (No.70471049)
文摘In this paper, the optimal viability decision problem of linear discrete-time stochastic systems with probability criterion is investigated. Under the condition of sequence-reachable discrete-time dynamic systems, the existence theorem of optimal viability strategy is given and the solving procedure of the optimal strategy is provided based on dynamic programming. A numerical example shows the effectiveness of the proposed methods.
文摘Almost estimators are designed for the white observation noise. In the estimation problems, rather than the white observation noise, there might be actual cases where the observation noise is modeled by the colored noise process. This paper examines to design a new estimation technique of recursive least-squares (RLS) Wiener fixed-point smoother and filter for colored observation noise in linear discrete-time wide-sense stationary stochastic systems. The observation y(k) is given as the sum of the signal z(k)=Hx(k) and the colored observation noise vc(k). The RLS Wiener estimators explicitly require the following information: 1) the system matrix for the state vector x(k);2) the observation matrix H;3) the variance of the state vector x(k);4) the system matrix for the colored observation noise vc(k);5) the variance of the colored observation noise;6) the input noise variance in the state equation for the colored observation noise.
文摘This paper proposes recursive least-squares (RLS) l-step ahead predictor and filtering algorithms with uncertain observations in linear discrete-time stochastic systems. The observation equation is given by y(k)=y(k)z(k)+v(k), z(k)=Hx(k), where {y(k)} is a binary switching sequence with conditional probability. The estimators require the information of the system state-transition matrix Ф, the observation matrix H, the variance K(k,k) of the state vector x(k), the variance R(k) of the observation noise, the probability p(k)=p{y(k)=1} that the signal exists in the uncertain observation equation and the (2,2) element [p(k|j)]2,2 of the conditional probability of y(k), given y(j).
基金This work relates to Department of Navy award N00014-22-1-2159 issued by the Office of Naval Research。
文摘This paper studies deterministic and stochastic fixedtime stability of autonomous nonlinear discrete-time(DT)systems.Lyapunov conditions are first presented under which the fixed-time stability of deterministic DT systems is certified.Extensions to systems under deterministic perturbations as well as stochastic noise are then considered.For the former,sensitivity to perturbations for fixed-time stable DT systems is analyzed,and it is shown that fixed-time attractiveness results from the presented Lyapunov conditions.For the latter,sufficient Lyapunov conditions for fixed-time stability in probability of nonlinear stochastic DT systems are presented.The fixed upper bound of the settling-time function is derived for both fixed-time stable and fixed-time attractive systems,and a stochastic settling-time function fixed upper bound is derived for stochastic DT systems.Illustrative examples are given along with simulation results to verify the introduced results.
文摘This paper addresses the problem of event-triggered finite-time H<sub>∞</sub> filter design for a class of discrete-time nonlinear stochastic systems with exogenous disturbances. The stochastic Lyapunov-Krasoviskii functional method is adopted to design a filter such that the filtering error system is stochastic finite-time stable (SFTS) and preserves a prescribed performance level according to the pre-defined event-triggered criteria. Based on stochastic differential equations theory, some sufficient conditions for the existence of H<sub>∞</sub> filter are obtained for the suggested system by employing linear matrix inequality technique. Finally, the desired H<sub>∞</sub> filter gain matrices can be expressed in an explicit form.
基金supported by Shandong Provincial Natural Science Foundation of China under Grant Nos.ZR2022MF239 and ZR2021MA002。
文摘A stabilization problem for stochastic systems with multiple input delays is investigated herein.A new method to construct an optimal control problem with input constraints is adopted.A sufficient stabilization condition is established via Riccati-type equations,whose verification is computationally simple because the variable dimension of the equations does not increase with regard to the delay.A stabilization controller is proposed,and it is a feedback of the state and a history input.This controller uses less history information than those with distributed terms.Two numerical examples illustrate the effectiveness of the obtained results.
基金supported by the National Natural Science Foundation of China(No.61174078)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20103718110006)A Project of Shandong Province Higher Educational Science and Technology Program(No.J12LN14)
文摘This paper deals with the infinite horizon linear quadratic (LQ) differential games for discrete-time stochas- tic systems with both state and control dependent noise. The Popov-Belevitch-Hautus (PBH) criteria for exact observability and exact detectability of discrete-time stochastic systems are presented. By means of them, we give the optimal strategies (Nash equilibrium strategies) and the optimal cost values for infinite horizon stochastic differential games. It indicates that the infinite horizon LQ stochastic differential gaines are associated with four coupled matrix-valued equations. Further- more, an iterative algorithm is proposed to solve the four coupled equations. Finally, an example is given to demonstrate our results.
基金supported by the National Natural Science Foundation of China under Grant Nos.12122401 and 12074007.
文摘In traditional finite-temperature Kohn–Sham density functional theory(KSDFT),the partial occupation of a large number of high-energy KS eigenstates restricts the use of first-principles molecular dynamics methods at extremely high temperatures.However,stochastic density functional theory(SDFT)can overcome this limitation.Recently,SDFT and the related mixed stochastic–deterministic density functional theory,based on a plane-wave basis set,have been implemented in the first-principles electronic structure software ABACUS[Q.Liu and M.Chen,Phys.Rev.B 106,125132(2022)].In this study,we combine SDFT with the Born–Oppenheimer molecular dynamics method to investigate systems with temperatures ranging from a few tens of eV to 1000 eV.Importantly,we train machine-learning-based interatomic models using the SDFT data and employ these deep potential models to simulate large-scale systems with long trajectories.Subsequently,we compute and analyze the structural properties,dynamic properties,and transport coefficients of warm dense matter.
基金supported by National Natural Science Foundation of China,China(No.42004016)HuBei Natural Science Fund,China(No.2020CFB329)+1 种基金HuNan Natural Science Fund,China(No.2023JJ60559,2023JJ60560)the State Key Laboratory of Geodesy and Earth’s Dynamics self-deployment project,China(No.S21L6101)。
文摘Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY sho rt-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/12.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods.
基金National Natural Science Foundation of China(Nos.12272283,12172266).
文摘The Mean First-Passage Time (MFPT) and Stochastic Resonance (SR) of a stochastic tumor-immune model withnoise perturbation are discussed in this paper. Firstly, considering environmental perturbation, Gaussian whitenoise and Gaussian colored noise are introduced into a tumor growth model under immune surveillance. Asfollows, the long-time evolution of the tumor characterized by the Stationary Probability Density (SPD) and MFPTis obtained in theory on the basis of the Approximated Fokker-Planck Equation (AFPE). Herein the recurrenceof the tumor from the extinction state to the tumor-present state is more concerned in this paper. A moreefficient algorithmof Back-Propagation Neural Network (BPNN) is utilized in order to testify the correction of thetheoretical SPDandMFPT.With the existence of aweak signal, the functional relationship between Signal-to-NoiseRatio (SNR), noise intensities and correlation time is also studied. Numerical results show that both multiplicativeGaussian colored noise and additive Gaussian white noise can promote the extinction of the tumors, and themultiplicative Gaussian colored noise can lead to the resonance-like peak on MFPT curves, while the increasingintensity of the additiveGaussian white noise results in theminimum of MFPT. In addition, the correlation timesare negatively correlated with MFPT. As for the SNR, we find the intensities of both the Gaussian white noise andthe Gaussian colored noise, as well as their correlation intensity can induce SR. Especially, SNR is monotonouslyincreased in the case ofGaussian white noisewith the change of the correlation time.At last, the optimal parametersin BPNN structure are analyzed for MFPT from three aspects: the penalty factors, the number of neural networklayers and the number of nodes in each layer.
基金supported in part by the National Natural Science Foundation of China(62103004,62273088,62273005,62003121)Anhui Provincial Natural Science Foundation of China(2108085QA13)+4 种基金the Natural Science Foundation of Zhejiang Province(LY24F030006)the Science and Technology Plan of Wuhu City(2022jc24)Anhui Polytechnic University Youth Top-Notch Talent Support Program(2018BJRC009)Anhui Polytechnic University High-End Equipment Intelligent Control Innovation Team(2021CXTD005)Anhui Future Technology Research Institute Foundation(2023qyhz08,2023qyhz09)。
文摘In this paper,the recursive filtering problem is considered for stochastic systems over filter-and-forward successive relay(FFSR)networks.An FFSR is located between the sensor and the remote filter to forward the measurement.In the successive relay,two cooperative relay nodes are adopted to forward the signals alternatively,thereby existing switching characteristics and inter-relay interferences(IRI).Since the filter-and-forward scheme is employed,the signal received by the relay is retransmitted after it passes through a linear filter.The objective of the paper is to concurrently design optimal recursive filters for FFSR and stochastic systems against switching characteristics and IRI of relays.First,a uniform measurement model is proposed by analyzing the transmission mechanism of FFSR.Then,novel filter structures with switching parameters are constructed for both FFSR and stochastic systems.With the help of the inductive method,filtering error covariances are presented in the form of coupled difference equations.Next,the desired filter gain matrices are further obtained by minimizing the trace of filtering error covariances.Moreover,the stability performance of the filtering algorithm is analyzed where the uniform bound is guaranteed on the filtering error covariance.Finally,the effectiveness of the proposed filtering method over FFSR is verified by a three-order resistance-inductance-capacitance circuit system.
基金supported in part by the National Natural Science Foundation of China(11771001)the Key Natural Science Research Project of Universities of Anhui Province,China(2022AH050108)。
文摘Dear Editor,This letter addresses the synchronization problem of a class of delayed stochastic complex dynamical networks consisting of multiple drive and response nodes.The aim is to achieve mean square exponential synchronization for the drive-response nodes despite the simultaneous presence of time delays and stochastic noises in node dynamics.
文摘Dear Editor,This letter investigates a partially-observed optimal control problem for backward stochastic differential delay equations(BSDDEs).By utilizing Girsanov’s theory and convex variational method,we obtain a maximum principle on the assumption that the state equation contains time delay and the control domain is convex.The adjoint processes can be represented as the solutions of certain time-advanced stochastic differential equations in finite-dimensional spaces.Linear backward stochastic differential equation(BSDE)was first introduced by Bismut in[1],while general BSDE was given by Pardoux and Peng[2].Since then,the theory of BSDEs developed rapidly.The corresponding optimal control problems,whose states are driven by BSDEs,have also been widely studied by some authors,see[3]-[5].
文摘In this paper we study optimal advertising problems that model the introduction of a new product into the market in the presence of carryover effects of the advertisement and with memory effects in the level of goodwill. In particular, we let the dynamics of the product goodwill to depend on the past, and also on past advertising efforts. We treat the problem by means of the stochastic Pontryagin maximum principle, that here is considered for a class of problems where in the state equation either the state or the control depend on the past. Moreover the control acts on the martingale term and the space of controls U can be chosen to be non-convex but now the space of controls U can be chosen to be non-convex. The maximum principle is thus formulated using a first-order adjoint Backward Stochastic Differential Equations (BSDEs), which can be explicitly computed due to the specific characteristics of the model, and a second-order adjoint relation.
基金supported by the Simons Foundation:Collaboration Grantssupported by the AFOSR grant FA9550-18-1-0383.
文摘In this paper,we consider the high order method for solving the linear transport equations under diffusive scaling and with random inputs.To tackle the randomness in the problem,the stochastic Galerkin method of the generalized polynomial chaos approach has been employed.Besides,the high order implicit-explicit scheme under the micro-macro decomposition framework and the discontinuous Galerkin method have been employed.We provide several numerical experiments to validate the accuracy and the stochastic asymptotic-preserving property.
基金Project supported by the National Natural Science Foundation of China (Grant No.12072025)the Beijing Natural Science Foundation (Grant No.1222015)。
文摘Stochastic resonance(SR) is investigated in an underdamped tri-stable potential system driven by Gaussian colored noise and a periodic excitation, where both displacement and velocity time-delayed states feedback are considered. It is challenging to study SR in a second-order delayed multi-stable system analytically. In this paper, the improved energy envelope stochastic average method is developed to derive the analytical expressions of stationary probability density(SPD)and spectral amplification. The effects of noise intensity, damping coefficient, and time delay on SR are analyzed. The results show that the shapes of joint SPD can be adjusted to the desired structure by choosing the time delay and feedback gains. For fixed time delay, the SR peak is increased for negative displacement or velocity feedback gain. Meanwhile, the SR peak is decreased while the optimal noise intensity increases with increasing correlation time of noise. The Monte Carlo simulations(MCS) confirm the effectiveness of the theoretical results.
基金Project supported by the National Natural Science Foundation of China(Grant No.12072262)the Shaanxi Computer Society&Xiangteng Company Foundation.
文摘This paper investigates logical stochastic resonance(LSR)in a cross-bifurcation non-smooth system driven by Gaussian colored noise.In this system,a bifurcation parameter triggers a transition between monostability,bistability and tristability.By using Novikov's theorem and the unified colored noise approximation method,the approximate Fokker-Planck equation is obtained.Then we derive the generalized potential function and the transition rates to analyze the LSR phenomenon using numerical simulations.We simulate the logic operation of the system in the bistable and tristable regions respectively.We assess the impact of Gaussian colored noise on the LSR and discover that the reliability of the logic response depends on the noise strength and the bifurcation parameter.Furthermore,it is found that the bistable region has a more extensive parameter range to produce reliable logic operation compared with the tristable region,since the tristable region is more sensitive to noise than the bistable one.