Considering limitations of Linear Discriminant Analysis (LDA) and Marginal Fisher Analysis (MFA), a novel discriminant analysis called Local Correlation Discriminant Analysis (LCDA) is proposed in this paper. The main...Considering limitations of Linear Discriminant Analysis (LDA) and Marginal Fisher Analysis (MFA), a novel discriminant analysis called Local Correlation Discriminant Analysis (LCDA) is proposed in this paper. The main idea behind LCDA is to use more robust similarity measure, correlation metric, to measure the local similarity between image data. This results in better classifi-cation performance. In addition, to further improve the discriminant power of LCDA, we extend LCDA to semi-supervised case, which can make use of both labeled and unlabeled data to perform dis-criminant analysis. Extensive experimental results on ORL and AR face databases demonstrate that the proposed LCDA and its semi-supervised version are superior to Principal Component Analysis (PCA), LDA, CEA, and MFA.展开更多
Improved picture quality is critical to the effectiveness of object recog-nition and tracking.The consistency of those photos is impacted by night-video systems because the contrast between high-profile items and diffe...Improved picture quality is critical to the effectiveness of object recog-nition and tracking.The consistency of those photos is impacted by night-video systems because the contrast between high-profile items and different atmospheric conditions,such as mist,fog,dust etc.The pictures then shift in intensity,colour,polarity and consistency.A general challenge for computer vision analyses lies in the horrid appearance of night images in arbitrary illumination and ambient envir-onments.In recent years,target recognition techniques focused on deep learning and machine learning have become standard algorithms for object detection with the exponential growth of computer performance capabilities.However,the iden-tification of objects in the night world also poses further problems because of the distorted backdrop and dim light.The Correlation aware LSTM based YOLO(You Look Only Once)classifier method for exact object recognition and deter-mining its properties under night vision was a major inspiration for this work.In order to create virtual target sets similar to daily environments,we employ night images as inputs;and to obtain high enhanced image using histogram based enhancement and iterative wienerfilter for removing the noise in the image.The process of the feature extraction and feature selection was done for electing the potential features using the Adaptive internal linear embedding(AILE)and uplift linear discriminant analysis(ULDA).The region of interest mask can be segmen-ted using the Recurrent-Phase Level set Segmentation.Finally,we use deep con-volution feature fusion and region of interest pooling to integrate the presently extremely sophisticated quicker Long short term memory based(LSTM)with YOLO method for object tracking system.A range of experimentalfindings demonstrate that our technique achieves high average accuracy with a precision of 99.7%for object detection of SSAN datasets that is considerably more than that of the other standard object detection mechanism.Our approach may therefore satisfy the true demands of night scene target detection applications.We very much believe that our method will help future research.展开更多
Foley-Sammon linear discriminant analysis (FSLDA) and uncorrelated linear discriminant analysis (ULDA) are two well-known kinds of linear discriminant analysis. Both ULDA and FSLDA search the kth discriminant vector i...Foley-Sammon linear discriminant analysis (FSLDA) and uncorrelated linear discriminant analysis (ULDA) are two well-known kinds of linear discriminant analysis. Both ULDA and FSLDA search the kth discriminant vector in an n-k+1 dimensional subspace, while they are subject to their respective constraints. Evidenced by strict demonstration, it is clear that in essence ULDA vectors are the covariance-orthogonal vectors of the corresponding eigen-equation. So, the algorithms for the covariance-orthogonal vectors are equivalent to the original algorithm of ULDA, which is time-consuming. Also, it is first revealed that the Fisher criterion value of each FSLDA vector must be not less than that of the corresponding ULDA vector by theory analysis. For a discriminant vector, the larger its Fisher criterion value is, the more powerful in discriminability it is. So, for FSLDA vectors, corresponding to larger Fisher criterion values is an advantage. On the other hand, in general any two feature components extracted by FSLDA vectors are statistically correlated with each other, which may make the discriminant vectors set at a disadvantageous position. In contrast to FSLDA vectors, any two feature components extracted by ULDA vectors are statistically uncorrelated with each other. Two experiments on CENPARMI handwritten numeral database and ORL database are performed. The experimental results are consistent with the theory analysis on Fisher criterion values of ULDA vectors and FSLDA vectors. The experiments also show that the equivalent algorithm of ULDA, presented in this paper, is much more efficient than the original algorithm of ULDA, as the theory analysis expects. Moreover, it appears that if there is high statistical correlation between feature components extracted by FSLDA vectors, FSLDA will not perform well, in spite of larger Fisher criterion value owned by every FSLDA vector. However, when the average correlation coefficient of feature components extracted by FSLDA vectors is at a low level, the performance of FSLDA are comparable with ULDA.展开更多
为探究萌芽期大蒜挥发性物质的差异,采用电子鼻、捕集阱顶空-气质联用仪(Trap head space-gas chromatography-mass spectrometry,HS-Trap-GC-MS)结合正交偏最小二乘法判别分析(Orthogonal partial least squares discriminant analysis...为探究萌芽期大蒜挥发性物质的差异,采用电子鼻、捕集阱顶空-气质联用仪(Trap head space-gas chromatography-mass spectrometry,HS-Trap-GC-MS)结合正交偏最小二乘法判别分析(Orthogonal partial least squares discriminant analysis,OPLS-DA)、香气活度值、差异性热图、相关性分析分析大蒜萌芽在0、24、48、72、96 h挥发性物质的差异。电子鼻结合OPLS-DA建立预测模型其预测能力达96.00%。GC-MS分析表明:含硫化合物是不同萌芽期大蒜的主要共有挥发性物质,含硫化合物的相对含量随萌芽时间的延长而呈递减趋势,而种类呈现出递增趋势;二烯丙基二硫醚是样品在萌芽过程中含量降低最多的物质。二烯丙基四硫醚、烯丙硫醇是样品共有关键化合物。差异性热图分析显示:除共有物质含量差异外,硫化丙烯、己醛、叠氮二羧酸二叔丁酯、丙烯醇、6-甲基-2-庚炔、5-甲基噻二唑、2-亚乙基-1,3-二硫烷、2-丙-2-炔基磺酰基丙烷、2,5-二甲基噻吩、2,5-二甲基呋喃、1-戊烯-3-醇、1,3-二噻烷的缺失进一步加大了未萌芽和萌芽大蒜气味的差异。萌芽大蒜主要共有挥发性物质的种类随萌芽时间的延长呈现递增趋势。大蒜主要挥发性物质与电子鼻大多数传感器存在显著相关性。大蒜的气味强度会随萌芽时间的延长而逐步减弱。展开更多
Biometric recognition refers to the identification of individuals through their unique behavioral features(e.g.,fingerprint,face,and iris).We need distinguishing characteristics to identify people,such as fingerprints...Biometric recognition refers to the identification of individuals through their unique behavioral features(e.g.,fingerprint,face,and iris).We need distinguishing characteristics to identify people,such as fingerprints,which are world-renowned as the most reliablemethod to identify people.The recognition of fingerprints has become a standard procedure in forensics,and different techniques are available for this purpose.Most current techniques lack interest in image enhancement and rely on high-dimensional features to generate classification models.Therefore,we proposed an effective fingerprint classification method for classifying the fingerprint image as authentic or altered since criminals and hackers routinely change their fingerprints to generate fake ones.In order to improve fingerprint classification accuracy,our proposed method used the most effective texture features and classifiers.Discriminant Analysis(DCA)and Gaussian Discriminant Analysis(GDA)are employed as classifiers,along with Histogram of Oriented Gradient(HOG)and Segmentation-based Feature Texture Analysis(SFTA)feature vectors as inputs.The performance of the classifiers is determined by assessing a range of feature sets,and the most accurate results are obtained.The proposed method is tested using a Sokoto Coventry Fingerprint Dataset(SOCOFing).The SOCOFing project includes 6,000 fingerprint images collected from 600 African people whose fingerprints were taken ten times.Three distinct degrees of obliteration,central rotation,and z-cut have been performed to obtain synthetically altered replicas of the genuine fingerprints.The proposal achieved massive success with a classification accuracy reaching 99%.The experimental results indicate that the proposed method for fingerprint classification is feasible and effective.The experiments also showed that the proposed SFTA-based GDA method outperformed state-of-art approaches in feature dimension and classification accuracy.展开更多
基金Supproted by the National Natural Science Foundation of China(No.60875004)the Natural Science Foundation of Jiangsu Province of China(No.BK2009184)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.07KJB520133)
文摘Considering limitations of Linear Discriminant Analysis (LDA) and Marginal Fisher Analysis (MFA), a novel discriminant analysis called Local Correlation Discriminant Analysis (LCDA) is proposed in this paper. The main idea behind LCDA is to use more robust similarity measure, correlation metric, to measure the local similarity between image data. This results in better classifi-cation performance. In addition, to further improve the discriminant power of LCDA, we extend LCDA to semi-supervised case, which can make use of both labeled and unlabeled data to perform dis-criminant analysis. Extensive experimental results on ORL and AR face databases demonstrate that the proposed LCDA and its semi-supervised version are superior to Principal Component Analysis (PCA), LDA, CEA, and MFA.
文摘Improved picture quality is critical to the effectiveness of object recog-nition and tracking.The consistency of those photos is impacted by night-video systems because the contrast between high-profile items and different atmospheric conditions,such as mist,fog,dust etc.The pictures then shift in intensity,colour,polarity and consistency.A general challenge for computer vision analyses lies in the horrid appearance of night images in arbitrary illumination and ambient envir-onments.In recent years,target recognition techniques focused on deep learning and machine learning have become standard algorithms for object detection with the exponential growth of computer performance capabilities.However,the iden-tification of objects in the night world also poses further problems because of the distorted backdrop and dim light.The Correlation aware LSTM based YOLO(You Look Only Once)classifier method for exact object recognition and deter-mining its properties under night vision was a major inspiration for this work.In order to create virtual target sets similar to daily environments,we employ night images as inputs;and to obtain high enhanced image using histogram based enhancement and iterative wienerfilter for removing the noise in the image.The process of the feature extraction and feature selection was done for electing the potential features using the Adaptive internal linear embedding(AILE)and uplift linear discriminant analysis(ULDA).The region of interest mask can be segmen-ted using the Recurrent-Phase Level set Segmentation.Finally,we use deep con-volution feature fusion and region of interest pooling to integrate the presently extremely sophisticated quicker Long short term memory based(LSTM)with YOLO method for object tracking system.A range of experimentalfindings demonstrate that our technique achieves high average accuracy with a precision of 99.7%for object detection of SSAN datasets that is considerably more than that of the other standard object detection mechanism.Our approach may therefore satisfy the true demands of night scene target detection applications.We very much believe that our method will help future research.
基金The National Natural Science Foundation of China (Grant No.60472060 ,60473039 and 60472061)
文摘Foley-Sammon linear discriminant analysis (FSLDA) and uncorrelated linear discriminant analysis (ULDA) are two well-known kinds of linear discriminant analysis. Both ULDA and FSLDA search the kth discriminant vector in an n-k+1 dimensional subspace, while they are subject to their respective constraints. Evidenced by strict demonstration, it is clear that in essence ULDA vectors are the covariance-orthogonal vectors of the corresponding eigen-equation. So, the algorithms for the covariance-orthogonal vectors are equivalent to the original algorithm of ULDA, which is time-consuming. Also, it is first revealed that the Fisher criterion value of each FSLDA vector must be not less than that of the corresponding ULDA vector by theory analysis. For a discriminant vector, the larger its Fisher criterion value is, the more powerful in discriminability it is. So, for FSLDA vectors, corresponding to larger Fisher criterion values is an advantage. On the other hand, in general any two feature components extracted by FSLDA vectors are statistically correlated with each other, which may make the discriminant vectors set at a disadvantageous position. In contrast to FSLDA vectors, any two feature components extracted by ULDA vectors are statistically uncorrelated with each other. Two experiments on CENPARMI handwritten numeral database and ORL database are performed. The experimental results are consistent with the theory analysis on Fisher criterion values of ULDA vectors and FSLDA vectors. The experiments also show that the equivalent algorithm of ULDA, presented in this paper, is much more efficient than the original algorithm of ULDA, as the theory analysis expects. Moreover, it appears that if there is high statistical correlation between feature components extracted by FSLDA vectors, FSLDA will not perform well, in spite of larger Fisher criterion value owned by every FSLDA vector. However, when the average correlation coefficient of feature components extracted by FSLDA vectors is at a low level, the performance of FSLDA are comparable with ULDA.
文摘Biometric recognition refers to the identification of individuals through their unique behavioral features(e.g.,fingerprint,face,and iris).We need distinguishing characteristics to identify people,such as fingerprints,which are world-renowned as the most reliablemethod to identify people.The recognition of fingerprints has become a standard procedure in forensics,and different techniques are available for this purpose.Most current techniques lack interest in image enhancement and rely on high-dimensional features to generate classification models.Therefore,we proposed an effective fingerprint classification method for classifying the fingerprint image as authentic or altered since criminals and hackers routinely change their fingerprints to generate fake ones.In order to improve fingerprint classification accuracy,our proposed method used the most effective texture features and classifiers.Discriminant Analysis(DCA)and Gaussian Discriminant Analysis(GDA)are employed as classifiers,along with Histogram of Oriented Gradient(HOG)and Segmentation-based Feature Texture Analysis(SFTA)feature vectors as inputs.The performance of the classifiers is determined by assessing a range of feature sets,and the most accurate results are obtained.The proposed method is tested using a Sokoto Coventry Fingerprint Dataset(SOCOFing).The SOCOFing project includes 6,000 fingerprint images collected from 600 African people whose fingerprints were taken ten times.Three distinct degrees of obliteration,central rotation,and z-cut have been performed to obtain synthetically altered replicas of the genuine fingerprints.The proposal achieved massive success with a classification accuracy reaching 99%.The experimental results indicate that the proposed method for fingerprint classification is feasible and effective.The experiments also showed that the proposed SFTA-based GDA method outperformed state-of-art approaches in feature dimension and classification accuracy.