Intelligent diagnosis driven by big data for mechanical fault is an important means to ensure the safe operation ofequipment. In these methods, deep learning-based machinery fault diagnosis approaches have received in...Intelligent diagnosis driven by big data for mechanical fault is an important means to ensure the safe operation ofequipment. In these methods, deep learning-based machinery fault diagnosis approaches have received increasingattention and achieved some results. It might lead to insufficient performance for using transfer learning alone andcause misclassification of target samples for domain bias when building deep models to learn domain-invariantfeatures. To address the above problems, a deep discriminative adversarial domain adaptation neural networkfor the bearing fault diagnosis model is proposed (DDADAN). In this method, the raw vibration data are firstlyconverted into frequency domain data by Fast Fourier Transform, and an improved deep convolutional neuralnetwork with wide first-layer kernels is used as a feature extractor to extract deep fault features. Then, domaininvariant features are learned from the fault data with correlation alignment-based domain adversarial training.Furthermore, to enhance the discriminative property of features, discriminative feature learning is embeddedinto this network to make the features compact, as well as separable between classes within the class. Finally, theperformance and anti-noise capability of the proposedmethod are evaluated using two sets of bearing fault datasets.The results demonstrate that the proposed method is capable of handling domain offset caused by differentworkingconditions and maintaining more than 97.53% accuracy on various transfer tasks. Furthermore, the proposedmethod can achieve high diagnostic accuracy under varying noise levels.展开更多
Recently,sparse representation classification(SRC)and fisher discrimination dictionary learning(FDDL)methods have emerged as important methods for vehicle classification.In this paper,inspired by recent breakthroughs ...Recently,sparse representation classification(SRC)and fisher discrimination dictionary learning(FDDL)methods have emerged as important methods for vehicle classification.In this paper,inspired by recent breakthroughs of discrimination dictionary learning approach and multi-task joint covariate selection,we focus on the problem of vehicle classification in real-world applications by formulating it as a multi-task joint sparse representation model based on fisher discrimination dictionary learning to merge the strength of multiple features among multiple sensors.To improve the classification accuracy in complex scenes,we develop a new method,called multi-task joint sparse representation classification based on fisher discrimination dictionary learning,for vehicle classification.In our proposed method,the acoustic and seismic sensor data sets are captured to measure the same physical event simultaneously by multiple heterogeneous sensors and the multi-dimensional frequency spectrum features of sensors data are extracted using Mel frequency cepstral coefficients(MFCC).Moreover,we extend our model to handle sparse environmental noise.We experimentally demonstrate the benefits of joint information fusion based on fisher discrimination dictionary learning from different sensors in vehicle classification tasks.展开更多
:Cross-project defect prediction(CPDP)aims to predict the defects on target project by using a prediction model built on source projects.The main problem in CPDP is the huge distribution gap between the source project...:Cross-project defect prediction(CPDP)aims to predict the defects on target project by using a prediction model built on source projects.The main problem in CPDP is the huge distribution gap between the source project and the target project,which prevents the prediction model from performing well.Most existing methods overlook the class discrimination of the learned features.Seeking an effective transferable model from the source project to the target project for CPDP is challenging.In this paper,we propose an unsupervised domain adaptation based on the discriminative subspace learning(DSL)approach for CPDP.DSL treats the data from two projects as being from two domains and maps the data into a common feature space.It employs crossdomain alignment with discriminative information from different projects to reduce the distribution difference of the data between different projects and incorporates the class discriminative information.Specifically,DSL first utilizes subspace learning based domain adaptation to reduce the distribution gap of data between different projects.Then,it makes full use of the class label information of the source project and transfers the discrimination ability of the source project to the target project in the common space.Comprehensive experiments on five projects verify that DSL can build an effective prediction model and improve the performance over the related competing methods by at least 7.10%and 11.08%in terms of G-measure and AUC.展开更多
The existing seismic reflection pattern classification methods need to convert multidimensional prestack seismic data into one-dimensional vectors for processing,which loses the characteristics of amplitude variation ...The existing seismic reflection pattern classification methods need to convert multidimensional prestack seismic data into one-dimensional vectors for processing,which loses the characteristics of amplitude variation with offset/azimuth in the prestack seismic data.In this study,a tensor discriminant dictionary learning method for classifying prestack seismic reflection patterns is proposed.The method is initially based on the tensor Tucker decomposition algorithm and uses a tensor form to characterize the prestack seismic data with multidimensional features.The tensor discriminant dictionary is then used to reduce the influence of noise on the sample features.Finally,the method uses the Pearson correlation coefficient to measure the correlation degree of the sparse representation coefficients of different types of tensors.The advantages of the new method are as follows.(1)It can retain the rich structural features in different dimensions in the prestack data.(2)It adjusts the threshold of the Pearson correlation coefficient to optimize the classification effect.(3)It fully uses drilling information and expert knowledge and performs calibration training of the sample labels.The numerical-model tests confirm that the new method is more accurate and robust than the traditional support vector machine and K-nearest neighbor classification algorithms.The application of actual data further confirms that the classification results of the new method agree with the geological patterns and are more suitable for the analysis and interpretation of sedimentary facies.展开更多
A multi-layer dictionary learning algorithm that joints global constraints and Fisher discrimination(JGCFD-MDL)for image classification tasks was proposed.The algorithm reveals the manifold structure of the data by le...A multi-layer dictionary learning algorithm that joints global constraints and Fisher discrimination(JGCFD-MDL)for image classification tasks was proposed.The algorithm reveals the manifold structure of the data by learning the global constraint dictionary and introduces the Fisher discriminative constraint dictionary to minimize the intra-class dispersion of samples and increase the inter-class dispersion.To further quantify the abstract features that characterize the data,a multi-layer dictionary learning framework is constructed to obtain high-level complex semantic structures and improve image classification performance.Finally,the algorithm is verified on the multi-label dataset of court costumes in the Ming Dynasty and Qing Dynasty,and better performance is obtained.Experiments show that compared with the local similarity algorithm,the average precision is improved by 3.34%.Compared with the single-layer dictionary learning algorithm,the one-error is improved by 1.00%,and the average precision is improved by 0.54%.Experiments also show that it has better performance on general datasets.展开更多
We propose a novel discriminative learning approach for Bayesian pattern classification, called 'constrained maximum margin (CMM)'. We define the margin between two classes as the difference between the minimum de...We propose a novel discriminative learning approach for Bayesian pattern classification, called 'constrained maximum margin (CMM)'. We define the margin between two classes as the difference between the minimum decision value for positive samples and the maximum decision value for negative samples. The learning problem is to maximize the margin under the con- straint that each training pattern is classified correctly. This nonlinear programming problem is solved using the sequential un- constrained minimization technique. We applied the proposed CMM approach to learn Bayesian classifiers based on Gaussian mixture models, and conducted the experiments on 10 UCI datasets. The performance of our approach was compared with those of the expectation-maximization algorithm, the support vector machine, and other state-of-the-art approaches. The experimental results demonstrated the effectiveness of our approach.展开更多
Person detection,which can locate the person regions in the image,continues to be a hot research topic in both computer vision and signal processing communities.However,detecting person at small scale remains a challe...Person detection,which can locate the person regions in the image,continues to be a hot research topic in both computer vision and signal processing communities.However,detecting person at small scale remains a challenging problem due to the lack of discriminative details in the typical image at small scale.In this paper,we propose a decomposition mapping method which contains two subnets:encoder subnet and decoder subnet.Encoder subnet can exploit decomposition transformation for person regions from big scale to small scale.Decoder subnet reverses the process of the encoder subnet.We add deconvolution network to the decoder subnet to make up for the lost information and a discriminative mapping has been restructured to transform the person regions from the small scale to the big scale.Therefore,person-regions and background-regions can then be separated according to their decomposition positions in the new scale space.The proposed approach is evaluated on two challenging person datasets:Caltech dataset and the KITTI dataset.Compared with SAF R-CNN,the miss rate has been optimized by 3.96%on Caltech person dataset and the mean average precision has been optimized by 1.76%on KITTI person dataset.展开更多
Extracting discriminative speaker-specific representations from speech signals and transforming them into fixed length vectors are key steps in speaker identification and verification systems.In this study,we propose ...Extracting discriminative speaker-specific representations from speech signals and transforming them into fixed length vectors are key steps in speaker identification and verification systems.In this study,we propose a latent discriminative representation learning method for speaker recognition.We mean that the learned representations in this study are not only discriminative but also relevant.Specifically,we introduce an additional speaker embedded lookup table to explore the relevance between different utterances from the same speaker.Moreover,a reconstruction constraint intended to learn a linear mapping matrix is introduced to make representation discriminative.Experimental results demonstrate that the proposed method outperforms state-of-the-art methods based on the Apollo dataset used in the Fearless Steps Challenge in INTERSPEECH2019 and the TIMIT dataset.展开更多
It is an effective approach to learn the influence of environmental parameters, such as additive noise and channel distortions, from training data for robust speech recognition. Most of the previous methods are based ...It is an effective approach to learn the influence of environmental parameters, such as additive noise and channel distortions, from training data for robust speech recognition. Most of the previous methods are based on maximum likelihood estimation criterion. However, these methods do not lead to a minimum error rate result. In this paper, a novel discrimina-tive learning method of environmental parameters, which is based on Minimum Classification Error (MCE) criterion, is proposed. In the method, a simple classifier and the Generalized Probabilistic Descent (GPD) algorithm are adopted to iteratively learn the environmental pa-rameters. Consequently, the clean speech features are estimated from the noisy speech features with the estimated environmental parameters, and then the estimations of clean speech features are utilized in the back-end HMM classifier. Experiments show that the best error rate reduction of 32.1% is obtained, tested on a task of 18 isolated confusion Korean words, relative to a conventional HMM system.展开更多
While medical care has improved,more education is needed to end bias and make the battle against HIV/AIDS more effective His 27th birthday was a dark milepost in Wang Bing’s life.On that day,Wang learned he was HIV p...While medical care has improved,more education is needed to end bias and make the battle against HIV/AIDS more effective His 27th birthday was a dark milepost in Wang Bing’s life.On that day,Wang learned he was HIV positive and he had been infected through unprotected sex."It hit me like a ton of bricks,"展开更多
基金the Natural Science Foundation of Henan Province(232300420094)the Science and TechnologyResearch Project of Henan Province(222102220092).
文摘Intelligent diagnosis driven by big data for mechanical fault is an important means to ensure the safe operation ofequipment. In these methods, deep learning-based machinery fault diagnosis approaches have received increasingattention and achieved some results. It might lead to insufficient performance for using transfer learning alone andcause misclassification of target samples for domain bias when building deep models to learn domain-invariantfeatures. To address the above problems, a deep discriminative adversarial domain adaptation neural networkfor the bearing fault diagnosis model is proposed (DDADAN). In this method, the raw vibration data are firstlyconverted into frequency domain data by Fast Fourier Transform, and an improved deep convolutional neuralnetwork with wide first-layer kernels is used as a feature extractor to extract deep fault features. Then, domaininvariant features are learned from the fault data with correlation alignment-based domain adversarial training.Furthermore, to enhance the discriminative property of features, discriminative feature learning is embeddedinto this network to make the features compact, as well as separable between classes within the class. Finally, theperformance and anti-noise capability of the proposedmethod are evaluated using two sets of bearing fault datasets.The results demonstrate that the proposed method is capable of handling domain offset caused by differentworkingconditions and maintaining more than 97.53% accuracy on various transfer tasks. Furthermore, the proposedmethod can achieve high diagnostic accuracy under varying noise levels.
基金This work was supported by National Natural Science Foundation of China(NSFC)under Grant No.61771299,No.61771322,No.61375015,No.61301027.
文摘Recently,sparse representation classification(SRC)and fisher discrimination dictionary learning(FDDL)methods have emerged as important methods for vehicle classification.In this paper,inspired by recent breakthroughs of discrimination dictionary learning approach and multi-task joint covariate selection,we focus on the problem of vehicle classification in real-world applications by formulating it as a multi-task joint sparse representation model based on fisher discrimination dictionary learning to merge the strength of multiple features among multiple sensors.To improve the classification accuracy in complex scenes,we develop a new method,called multi-task joint sparse representation classification based on fisher discrimination dictionary learning,for vehicle classification.In our proposed method,the acoustic and seismic sensor data sets are captured to measure the same physical event simultaneously by multiple heterogeneous sensors and the multi-dimensional frequency spectrum features of sensors data are extracted using Mel frequency cepstral coefficients(MFCC).Moreover,we extend our model to handle sparse environmental noise.We experimentally demonstrate the benefits of joint information fusion based on fisher discrimination dictionary learning from different sensors in vehicle classification tasks.
基金This paper was supported by the National Natural Science Foundation of China(61772286,61802208,and 61876089)China Postdoctoral Science Foundation Grant 2019M651923Natural Science Foundation of Jiangsu Province of China(BK0191381).
文摘:Cross-project defect prediction(CPDP)aims to predict the defects on target project by using a prediction model built on source projects.The main problem in CPDP is the huge distribution gap between the source project and the target project,which prevents the prediction model from performing well.Most existing methods overlook the class discrimination of the learned features.Seeking an effective transferable model from the source project to the target project for CPDP is challenging.In this paper,we propose an unsupervised domain adaptation based on the discriminative subspace learning(DSL)approach for CPDP.DSL treats the data from two projects as being from two domains and maps the data into a common feature space.It employs crossdomain alignment with discriminative information from different projects to reduce the distribution difference of the data between different projects and incorporates the class discriminative information.Specifically,DSL first utilizes subspace learning based domain adaptation to reduce the distribution gap of data between different projects.Then,it makes full use of the class label information of the source project and transfers the discrimination ability of the source project to the target project in the common space.Comprehensive experiments on five projects verify that DSL can build an effective prediction model and improve the performance over the related competing methods by at least 7.10%and 11.08%in terms of G-measure and AUC.
基金supported by the National Natural Science Foundation of China(Nos.42130812,42174151,and 41874155).
文摘The existing seismic reflection pattern classification methods need to convert multidimensional prestack seismic data into one-dimensional vectors for processing,which loses the characteristics of amplitude variation with offset/azimuth in the prestack seismic data.In this study,a tensor discriminant dictionary learning method for classifying prestack seismic reflection patterns is proposed.The method is initially based on the tensor Tucker decomposition algorithm and uses a tensor form to characterize the prestack seismic data with multidimensional features.The tensor discriminant dictionary is then used to reduce the influence of noise on the sample features.Finally,the method uses the Pearson correlation coefficient to measure the correlation degree of the sparse representation coefficients of different types of tensors.The advantages of the new method are as follows.(1)It can retain the rich structural features in different dimensions in the prestack data.(2)It adjusts the threshold of the Pearson correlation coefficient to optimize the classification effect.(3)It fully uses drilling information and expert knowledge and performs calibration training of the sample labels.The numerical-model tests confirm that the new method is more accurate and robust than the traditional support vector machine and K-nearest neighbor classification algorithms.The application of actual data further confirms that the classification results of the new method agree with the geological patterns and are more suitable for the analysis and interpretation of sedimentary facies.
基金supported by the National Key Research and Development Project(2021YFF0901701)。
文摘A multi-layer dictionary learning algorithm that joints global constraints and Fisher discrimination(JGCFD-MDL)for image classification tasks was proposed.The algorithm reveals the manifold structure of the data by learning the global constraint dictionary and introduces the Fisher discriminative constraint dictionary to minimize the intra-class dispersion of samples and increase the inter-class dispersion.To further quantify the abstract features that characterize the data,a multi-layer dictionary learning framework is constructed to obtain high-level complex semantic structures and improve image classification performance.Finally,the algorithm is verified on the multi-label dataset of court costumes in the Ming Dynasty and Qing Dynasty,and better performance is obtained.Experiments show that compared with the local similarity algorithm,the average precision is improved by 3.34%.Compared with the single-layer dictionary learning algorithm,the one-error is improved by 1.00%,and the average precision is improved by 0.54%.Experiments also show that it has better performance on general datasets.
基金Project supported by the National Natural Science Foundation of China(Nos.60973059 and 81171407)the Program for New Century Excellent Talents in University,China(No.NCET-10-0044)
文摘We propose a novel discriminative learning approach for Bayesian pattern classification, called 'constrained maximum margin (CMM)'. We define the margin between two classes as the difference between the minimum decision value for positive samples and the maximum decision value for negative samples. The learning problem is to maximize the margin under the con- straint that each training pattern is classified correctly. This nonlinear programming problem is solved using the sequential un- constrained minimization technique. We applied the proposed CMM approach to learn Bayesian classifiers based on Gaussian mixture models, and conducted the experiments on 10 UCI datasets. The performance of our approach was compared with those of the expectation-maximization algorithm, the support vector machine, and other state-of-the-art approaches. The experimental results demonstrated the effectiveness of our approach.
基金Supported by the National Key R&D Program of China(2017YFC0803700)National Natural Science Foundation of China(U1611461,61876135,61862015)Hubei Province Technological Innovation Major Project(2018AAA062,2018CFA024)。
文摘Person detection,which can locate the person regions in the image,continues to be a hot research topic in both computer vision and signal processing communities.However,detecting person at small scale remains a challenging problem due to the lack of discriminative details in the typical image at small scale.In this paper,we propose a decomposition mapping method which contains two subnets:encoder subnet and decoder subnet.Encoder subnet can exploit decomposition transformation for person regions from big scale to small scale.Decoder subnet reverses the process of the encoder subnet.We add deconvolution network to the decoder subnet to make up for the lost information and a discriminative mapping has been restructured to transform the person regions from the small scale to the big scale.Therefore,person-regions and background-regions can then be separated according to their decomposition positions in the new scale space.The proposed approach is evaluated on two challenging person datasets:Caltech dataset and the KITTI dataset.Compared with SAF R-CNN,the miss rate has been optimized by 3.96%on Caltech person dataset and the mean average precision has been optimized by 1.76%on KITTI person dataset.
基金Project supported by the National Natural Science Foundation of China(Nos.U1836220 and 61672267)the Qing Lan Talent Program of Jiangsu Province,Chinathe Jiangsu Province Key Research and Development Plan(Industry Foresight and Key Core Technology)(No.BE2020036)。
文摘Extracting discriminative speaker-specific representations from speech signals and transforming them into fixed length vectors are key steps in speaker identification and verification systems.In this study,we propose a latent discriminative representation learning method for speaker recognition.We mean that the learned representations in this study are not only discriminative but also relevant.Specifically,we introduce an additional speaker embedded lookup table to explore the relevance between different utterances from the same speaker.Moreover,a reconstruction constraint intended to learn a linear mapping matrix is introduced to make representation discriminative.Experimental results demonstrate that the proposed method outperforms state-of-the-art methods based on the Apollo dataset used in the Fearless Steps Challenge in INTERSPEECH2019 and the TIMIT dataset.
基金the '863' High-Tech Programme of China (No. 863-306ZT03-02-3) and partially by the National Natural Science Foundation of China
文摘It is an effective approach to learn the influence of environmental parameters, such as additive noise and channel distortions, from training data for robust speech recognition. Most of the previous methods are based on maximum likelihood estimation criterion. However, these methods do not lead to a minimum error rate result. In this paper, a novel discrimina-tive learning method of environmental parameters, which is based on Minimum Classification Error (MCE) criterion, is proposed. In the method, a simple classifier and the Generalized Probabilistic Descent (GPD) algorithm are adopted to iteratively learn the environmental pa-rameters. Consequently, the clean speech features are estimated from the noisy speech features with the estimated environmental parameters, and then the estimations of clean speech features are utilized in the back-end HMM classifier. Experiments show that the best error rate reduction of 32.1% is obtained, tested on a task of 18 isolated confusion Korean words, relative to a conventional HMM system.
文摘While medical care has improved,more education is needed to end bias and make the battle against HIV/AIDS more effective His 27th birthday was a dark milepost in Wang Bing’s life.On that day,Wang learned he was HIV positive and he had been infected through unprotected sex."It hit me like a ton of bricks,"