A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with...A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with the recovery of fully perturbed low-rank matrices. By utilizing the p-null space property (p-NSP) and the p-restricted isometry property (p-RIP) of the matrix, sufficient conditions to ensure that the stable and accurate reconstruction for low-rank matrix in the case of full perturbation are derived, and two upper bound recovery error estimation ns are given. These estimations are characterized by two vital aspects, one involving the best r-approximation error and the other concerning the overall noise. Specifically, this paper obtains two new error upper bounds based on the fact that p-RIP and p-NSP are able to recover accurately and stably low-rank matrix, and to some extent improve the conditions corresponding to RIP.展开更多
The method of recovering a low-rank matrix with an unknown fraction whose entries are arbitrarily corrupted is known as the robust principal component analysis (RPCA). This RPCA problem, under some conditions, can b...The method of recovering a low-rank matrix with an unknown fraction whose entries are arbitrarily corrupted is known as the robust principal component analysis (RPCA). This RPCA problem, under some conditions, can be exactly solved via convex optimization by minimizing a combination of the nuclear norm and the 11 norm. In this paper, an algorithm based on the Douglas-Rachford splitting method is proposed for solving the RPCA problem. First, the convex optimization problem is solved by canceling the constraint of the variables, and ~hen the proximity operators of the objective function are computed alternately. The new algorithm can exactly recover the low-rank and sparse components simultaneously, and it is proved to be convergent. Numerical simulations demonstrate the practical utility of the proposed algorithm.展开更多
As the development of smart grid and energy internet, this leads to a significantincrease in the amount of data transmitted in real time. Due to the mismatch withcommunication networks that were not designed to carry ...As the development of smart grid and energy internet, this leads to a significantincrease in the amount of data transmitted in real time. Due to the mismatch withcommunication networks that were not designed to carry high-speed and real time data,data losses and data quality degradation may happen constantly. For this problem,according to the strong spatial and temporal correlation of electricity data which isgenerated by human’s actions and feelings, we build a low-rank electricity data matrixwhere the row is time and the column is user. Inspired by matrix decomposition, we dividethe low-rank electricity data matrix into the multiply of two small matrices and use theknown data to approximate the low-rank electricity data matrix and recover the missedelectrical data. Based on the real electricity data, we analyze the low-rankness of theelectricity data matrix and perform the Matrix Decomposition-based method on the realdata. The experimental results verify the efficiency and efficiency of the proposed scheme.展开更多
In this paper, a sufficient condition is obtained to ensure the stable recovery(ε≠ 0) or exact recovery(ε = 0) of all r-rank matrices X ∈ Rm×nfrom b = A(X) + z via nonconvex Schatten p-minimization for anyδ4...In this paper, a sufficient condition is obtained to ensure the stable recovery(ε≠ 0) or exact recovery(ε = 0) of all r-rank matrices X ∈ Rm×nfrom b = A(X) + z via nonconvex Schatten p-minimization for anyδ4r∈ [3~(1/2))2, 1). Moreover, we determine the range of parameter p with any given δ4r∈ [(3~(1/2))/22, 1). In fact, for any given δ4r∈ [3~(1/2))2, 1), p ∈(0, 2(1- δ4r)] suffices for the stable recovery or exact recovery of all r-rank matrices.展开更多
As a kind of weaker supervisory information, pairwise constraints can be exploited to guide the data analysis process, such as data clustering. This paper formulates pairwise constraint propagation, which aims to pred...As a kind of weaker supervisory information, pairwise constraints can be exploited to guide the data analysis process, such as data clustering. This paper formulates pairwise constraint propagation, which aims to predict the large quantity of unknown constraints from scarce known constraints, as a low-rank matrix recovery(LMR) problem. Although recent advances in transductive learning based on matrix completion can be directly adopted to solve this problem, our work intends to develop a more general low-rank matrix recovery solution for pairwise constraint propagation, which not only completes the unknown entries in the constraint matrix but also removes the noise from the data matrix. The problem can be effectively solved using an augmented Lagrange multiplier method. Experimental results on constrained clustering tasks based on the propagated pairwise constraints have shown that our method can obtain more stable results than state-of-the-art algorithms,and outperform them.展开更多
This paper considers approximately sparse signal and low-rank matrix’s recovery via truncated norm minimization minx∥xT∥q and minX∥XT∥Sq from noisy measurements.We first introduce truncated sparse approximation p...This paper considers approximately sparse signal and low-rank matrix’s recovery via truncated norm minimization minx∥xT∥q and minX∥XT∥Sq from noisy measurements.We first introduce truncated sparse approximation property,a more general robust null space property,and establish the stable recovery of signals and matrices under the truncated sparse approximation property.We also explore the relationship between the restricted isometry property and truncated sparse approximation property.And we also prove that if a measurement matrix A or linear map A satisfies truncated sparse approximation property of order k,then the first inequality in restricted isometry property of order k and of order 2k can hold for certain different constantsδk andδ2k,respectively.Last,we show that ifδs(k+|T^c|)<√(s-1)/s for some s≥4/3,then measurement matrix A and linear map A satisfy truncated sparse approximation property of order k.It should be pointed out that when Tc=Ф,our conclusion implies that sparse approximation property of order k is weaker than restricted isometry property of order sk.展开更多
This paper discusses conditions under which the solution of linear system with minimal Schatten-p norm, 0 〈 p ≤ 1, is also the lowest-rank solution of this linear system. To study this problem, an important tool is ...This paper discusses conditions under which the solution of linear system with minimal Schatten-p norm, 0 〈 p ≤ 1, is also the lowest-rank solution of this linear system. To study this problem, an important tool is the restricted isometry constant (RIC). Some papers provided the upper bounds of RIC to guarantee that the nuclear-norm minimization stably recovers a low-rank matrix. For example, Fazel improved the upper bounds to δ4Ar 〈 0.558 and δ3rA 〈 0.4721, respectively. Recently, the upper bounds of RIC can be improved to δ2rA 〈 0.307. In fact, by using some methods, the upper bounds of RIC can be improved to δ2tA 〈 0.4931 and δrA 〈 0.309. In this paper, we focus on the lower bounds of RIC, we show that there exists linear maps A with δ2rA 〉1√2 or δrA 〉 1/3 for which nuclear norm recovery fail on some matrix with rank at most r. These results indicate that there is only a little limited room for improving the upper bounds for δ2rA and δrA.Furthermore, we also discuss the upper bound of restricted isometry constant associated with linear maps A for Schatten p (0 〈 p 〈 1) quasi norm minimization problem.展开更多
We consider the rank minimization problem from quadratic measurements,i.e.,recovering a rank r matrix X 2 Rn×r from m scalar measurements yi=ai XX⊤ai,ai 2 Rn,i=1,...,m.Such problem arises in a variety of applicat...We consider the rank minimization problem from quadratic measurements,i.e.,recovering a rank r matrix X 2 Rn×r from m scalar measurements yi=ai XX⊤ai,ai 2 Rn,i=1,...,m.Such problem arises in a variety of applications such as quadratic regression and quantum state tomography.We present a novel algorithm,which is termed exponential-type gradient descent algorithm,to minimize a non-convex objective function f(U)=14m Pm i=1(yi−a⊤i UU⊤ai)2.This algorithm starts with a careful initialization,and then refines this initial guess by iteratively applying exponential-type gradient descent.Particularly,we can obtain a good initial guess of X as long as the number of Gaussian random measurements is O(nr),and our iteration algorithm can converge linearly to the true X(up to an orthogonal matrix)with m=O(nr log(cr))Gaussian random measurements。展开更多
文摘A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with the recovery of fully perturbed low-rank matrices. By utilizing the p-null space property (p-NSP) and the p-restricted isometry property (p-RIP) of the matrix, sufficient conditions to ensure that the stable and accurate reconstruction for low-rank matrix in the case of full perturbation are derived, and two upper bound recovery error estimation ns are given. These estimations are characterized by two vital aspects, one involving the best r-approximation error and the other concerning the overall noise. Specifically, this paper obtains two new error upper bounds based on the fact that p-RIP and p-NSP are able to recover accurately and stably low-rank matrix, and to some extent improve the conditions corresponding to RIP.
基金supported by the National Natural Science Foundation of China(No.61271014)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20124301110003)the Graduated Students Innovation Fund of Hunan Province(No.CX2012B238)
文摘The method of recovering a low-rank matrix with an unknown fraction whose entries are arbitrarily corrupted is known as the robust principal component analysis (RPCA). This RPCA problem, under some conditions, can be exactly solved via convex optimization by minimizing a combination of the nuclear norm and the 11 norm. In this paper, an algorithm based on the Douglas-Rachford splitting method is proposed for solving the RPCA problem. First, the convex optimization problem is solved by canceling the constraint of the variables, and ~hen the proximity operators of the objective function are computed alternately. The new algorithm can exactly recover the low-rank and sparse components simultaneously, and it is proved to be convergent. Numerical simulations demonstrate the practical utility of the proposed algorithm.
文摘As the development of smart grid and energy internet, this leads to a significantincrease in the amount of data transmitted in real time. Due to the mismatch withcommunication networks that were not designed to carry high-speed and real time data,data losses and data quality degradation may happen constantly. For this problem,according to the strong spatial and temporal correlation of electricity data which isgenerated by human’s actions and feelings, we build a low-rank electricity data matrixwhere the row is time and the column is user. Inspired by matrix decomposition, we dividethe low-rank electricity data matrix into the multiply of two small matrices and use theknown data to approximate the low-rank electricity data matrix and recover the missedelectrical data. Based on the real electricity data, we analyze the low-rankness of theelectricity data matrix and perform the Matrix Decomposition-based method on the realdata. The experimental results verify the efficiency and efficiency of the proposed scheme.
基金supported by National Natural Science Foundation of China(Grant Nos.11271050 and 11371183)Beijing Center for Mathematics and Information Interdisciplinary Sciences
文摘In this paper, a sufficient condition is obtained to ensure the stable recovery(ε≠ 0) or exact recovery(ε = 0) of all r-rank matrices X ∈ Rm×nfrom b = A(X) + z via nonconvex Schatten p-minimization for anyδ4r∈ [3~(1/2))2, 1). Moreover, we determine the range of parameter p with any given δ4r∈ [(3~(1/2))/22, 1). In fact, for any given δ4r∈ [3~(1/2))2, 1), p ∈(0, 2(1- δ4r)] suffices for the stable recovery or exact recovery of all r-rank matrices.
基金supported by the National Natural Science Foundation of China (No. 61300164)
文摘As a kind of weaker supervisory information, pairwise constraints can be exploited to guide the data analysis process, such as data clustering. This paper formulates pairwise constraint propagation, which aims to predict the large quantity of unknown constraints from scarce known constraints, as a low-rank matrix recovery(LMR) problem. Although recent advances in transductive learning based on matrix completion can be directly adopted to solve this problem, our work intends to develop a more general low-rank matrix recovery solution for pairwise constraint propagation, which not only completes the unknown entries in the constraint matrix but also removes the noise from the data matrix. The problem can be effectively solved using an augmented Lagrange multiplier method. Experimental results on constrained clustering tasks based on the propagated pairwise constraints have shown that our method can obtain more stable results than state-of-the-art algorithms,and outperform them.
基金supported by the National Natural Science Foundation of China(11871109)NSAF(U1830107)the Science Challenge Project(TZ2018001)
文摘This paper considers approximately sparse signal and low-rank matrix’s recovery via truncated norm minimization minx∥xT∥q and minX∥XT∥Sq from noisy measurements.We first introduce truncated sparse approximation property,a more general robust null space property,and establish the stable recovery of signals and matrices under the truncated sparse approximation property.We also explore the relationship between the restricted isometry property and truncated sparse approximation property.And we also prove that if a measurement matrix A or linear map A satisfies truncated sparse approximation property of order k,then the first inequality in restricted isometry property of order k and of order 2k can hold for certain different constantsδk andδ2k,respectively.Last,we show that ifδs(k+|T^c|)<√(s-1)/s for some s≥4/3,then measurement matrix A and linear map A satisfy truncated sparse approximation property of order k.It should be pointed out that when Tc=Ф,our conclusion implies that sparse approximation property of order k is weaker than restricted isometry property of order sk.
基金supported by National Natural Science Foundation of China (Grant Nos.91130009, 11171299 and 11041005)National Natural Science Foundation of Zhejiang Province in China (Grant Nos. Y6090091 and Y6090641)
文摘This paper discusses conditions under which the solution of linear system with minimal Schatten-p norm, 0 〈 p ≤ 1, is also the lowest-rank solution of this linear system. To study this problem, an important tool is the restricted isometry constant (RIC). Some papers provided the upper bounds of RIC to guarantee that the nuclear-norm minimization stably recovers a low-rank matrix. For example, Fazel improved the upper bounds to δ4Ar 〈 0.558 and δ3rA 〈 0.4721, respectively. Recently, the upper bounds of RIC can be improved to δ2rA 〈 0.307. In fact, by using some methods, the upper bounds of RIC can be improved to δ2tA 〈 0.4931 and δrA 〈 0.309. In this paper, we focus on the lower bounds of RIC, we show that there exists linear maps A with δ2rA 〉1√2 or δrA 〉 1/3 for which nuclear norm recovery fail on some matrix with rank at most r. These results indicate that there is only a little limited room for improving the upper bounds for δ2rA and δrA.Furthermore, we also discuss the upper bound of restricted isometry constant associated with linear maps A for Schatten p (0 〈 p 〈 1) quasi norm minimization problem.
基金The research of the second author was supported by NSFC grant(91630203,11688101)by Youth Innovation Promotion Association CAS,Beijing Natural Science Foundation(Z180002)by National Basic Research Program of China(973 Program 2015CB856000).
文摘We consider the rank minimization problem from quadratic measurements,i.e.,recovering a rank r matrix X 2 Rn×r from m scalar measurements yi=ai XX⊤ai,ai 2 Rn,i=1,...,m.Such problem arises in a variety of applications such as quadratic regression and quantum state tomography.We present a novel algorithm,which is termed exponential-type gradient descent algorithm,to minimize a non-convex objective function f(U)=14m Pm i=1(yi−a⊤i UU⊤ai)2.This algorithm starts with a careful initialization,and then refines this initial guess by iteratively applying exponential-type gradient descent.Particularly,we can obtain a good initial guess of X as long as the number of Gaussian random measurements is O(nr),and our iteration algorithm can converge linearly to the true X(up to an orthogonal matrix)with m=O(nr log(cr))Gaussian random measurements。