A novel combined personalized feature framework is proposed for face recognition (FR). In the framework, the proposed linear discriminant analysis (LDA) makes use of the null space of the within-class scatter matrix e...A novel combined personalized feature framework is proposed for face recognition (FR). In the framework, the proposed linear discriminant analysis (LDA) makes use of the null space of the within-class scatter matrix effectively, and Global feature vectors (PCA-transformed) and local feature vectors (Gabor wavelet-transformed) are integrated by complex vectors as input feature of improved LDA. The proposed method is compared to other commonly used FR methods on two face databases (ORL and UMIST). Results demonstrated that the performance of the proposed method is superior to that of traditional FR ap- proaches展开更多
In response to the unclear understanding of fracture propagation and intersection interference in zipper fracturing under the factory development model of deep shale gas wells,a coupled hydro-mechanical model for zipp...In response to the unclear understanding of fracture propagation and intersection interference in zipper fracturing under the factory development model of deep shale gas wells,a coupled hydro-mechanical model for zipper fracturing considering the influence of natural fracture zones was established based on the finite element–discrete element method.The reliability of the model was verified using experimental data and field monitoring pressure increase data.Taking the deep shale gas reservoir in southern Sichuan as an example,the propagation and interference laws of fracturing fractures under the influence of natural fracture zones with different characteristics were studied.The results show that the large approaching angle fracture zone has a blocking effect on the forward propagation of fracturing fractures and the intersection of inter well fractures.During pump shutdown,hydraulic fractures exhibit continued expansion behavior under net pressure driving.Under high stress difference,as the approaching angle of the fracture zone increases,the response well pressure increase and the total length of the fractured fracture show a trend of first decreasing and then increasing,and first increasing and then decreasing,respectively.Compared to small approach angle fracture zones,natural fracture zones with large approach angles require longer time and have greater difficulty to intersect.The width of fractures and the length of natural fractures are negatively and positively correlated with the response well pressure increase,respectively,and positively and negatively correlated with the time required for intersection,the total length of hydraulic fractures,and fracturing efficiency,respectively.As the displacement distance of the well increases,the probability of fracture intersection decreases,but the regularity between displacement distance and the response well pressure increase and the total length of fractures is not obvious.展开更多
A binaural-loudness-model-based method for evaluating the spatial discrimination threshold of magnitudes of head-related transfer function(HRTF) is proposed.As the input of the binaural loudness model,the HRTF magni...A binaural-loudness-model-based method for evaluating the spatial discrimination threshold of magnitudes of head-related transfer function(HRTF) is proposed.As the input of the binaural loudness model,the HRTF magnitude variations caused by spatial position variations were firstly calculated from a high-resolution HRTF dataset.Then,three perceptualrelevant parameters,namely interaural loudness level difference,binaural loudness level spectra,and total binaural loudness level,were derived from the binaural loudness model.Finally,the spatial discrimination thresholds of HRTF magnitude were evaluated according to just-noticedifference of the above-mentioned perceptual-relevant parameters.A series of psychoacoustic experiments was also conducted to obtain the spatial discrimination threshold of HRTF magnitudes.Results indicate that the threshold derived from the proposed binaural-loudness-modelbased method is consistent with that obtained from the traditional psychoacoustic experiment,validating the effectiveness of the proposed method.展开更多
基金Project (No. 60275023) supported by the National Natural Sci-ence Foundation of China
文摘A novel combined personalized feature framework is proposed for face recognition (FR). In the framework, the proposed linear discriminant analysis (LDA) makes use of the null space of the within-class scatter matrix effectively, and Global feature vectors (PCA-transformed) and local feature vectors (Gabor wavelet-transformed) are integrated by complex vectors as input feature of improved LDA. The proposed method is compared to other commonly used FR methods on two face databases (ORL and UMIST). Results demonstrated that the performance of the proposed method is superior to that of traditional FR ap- proaches
基金Supported by National Natural Science Foundation Joint Fund Project(NO.U21B2071)National Natural Science Youth Foundation of China(NO.52304041)。
文摘In response to the unclear understanding of fracture propagation and intersection interference in zipper fracturing under the factory development model of deep shale gas wells,a coupled hydro-mechanical model for zipper fracturing considering the influence of natural fracture zones was established based on the finite element–discrete element method.The reliability of the model was verified using experimental data and field monitoring pressure increase data.Taking the deep shale gas reservoir in southern Sichuan as an example,the propagation and interference laws of fracturing fractures under the influence of natural fracture zones with different characteristics were studied.The results show that the large approaching angle fracture zone has a blocking effect on the forward propagation of fracturing fractures and the intersection of inter well fractures.During pump shutdown,hydraulic fractures exhibit continued expansion behavior under net pressure driving.Under high stress difference,as the approaching angle of the fracture zone increases,the response well pressure increase and the total length of the fractured fracture show a trend of first decreasing and then increasing,and first increasing and then decreasing,respectively.Compared to small approach angle fracture zones,natural fracture zones with large approach angles require longer time and have greater difficulty to intersect.The width of fractures and the length of natural fractures are negatively and positively correlated with the response well pressure increase,respectively,and positively and negatively correlated with the time required for intersection,the total length of hydraulic fractures,and fracturing efficiency,respectively.As the displacement distance of the well increases,the probability of fracture intersection decreases,but the regularity between displacement distance and the response well pressure increase and the total length of fractures is not obvious.
基金Supported by the National Natural Science Foundation of China(11174087)
文摘A binaural-loudness-model-based method for evaluating the spatial discrimination threshold of magnitudes of head-related transfer function(HRTF) is proposed.As the input of the binaural loudness model,the HRTF magnitude variations caused by spatial position variations were firstly calculated from a high-resolution HRTF dataset.Then,three perceptualrelevant parameters,namely interaural loudness level difference,binaural loudness level spectra,and total binaural loudness level,were derived from the binaural loudness model.Finally,the spatial discrimination thresholds of HRTF magnitude were evaluated according to just-noticedifference of the above-mentioned perceptual-relevant parameters.A series of psychoacoustic experiments was also conducted to obtain the spatial discrimination threshold of HRTF magnitudes.Results indicate that the threshold derived from the proposed binaural-loudness-modelbased method is consistent with that obtained from the traditional psychoacoustic experiment,validating the effectiveness of the proposed method.