期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Sustainable Investment Forecasting of Power Grids Based on theDeep Restricted Boltzmann Machine Optimized by the Lion Algorithm 被引量:3
1
作者 Qian Wang Xiaolong Yang +1 位作者 Di Pu Yingying Fan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第1期269-286,共18页
This paper proposes a new power grid investment prediction model based on the deep restricted Boltzmann machine(DRBM)optimized by the Lion algorithm(LA).Firstly,two factors including transmission and distribution pric... This paper proposes a new power grid investment prediction model based on the deep restricted Boltzmann machine(DRBM)optimized by the Lion algorithm(LA).Firstly,two factors including transmission and distribution price reform(TDPR)and 5G station construction were comprehensively incorporated into the consideration of influencing factors,and the fuzzy threshold method was used to screen out critical influencing factors.Then,the LA was used to optimize the parameters of the DRBM model to improve the model’s prediction accuracy,and the model was trained with the selected influencing factors and investment.Finally,the LA-DRBM model was used to predict the investment of a power grid enterprise,and the final prediction result was obtained by modifying the initial result with the modifying factors.The LA-DRBMmodel compensates for the deficiency of the singlemodel,and greatly improves the investment prediction accuracy of the power grid.In this study,a power grid enterprise was taken as an example to carry out an empirical analysis to prove the validity of the model,and a comparison with the RBM,support vector machine(SVM),back propagation neural network(BPNN),and regression model was conducted to verify the superiority of the model.The conclusion indicates that the proposed model has a strong generalization ability and good robustness,is able to abstract the combination of low-level features into high-level features,and can improve the efficiency of the model’s calculations for investment prediction of power grid enterprises. 展开更多
关键词 Lion algorithm deep restricted boltzmann machine fuzzy threshold method power grid investment forecasting
下载PDF
基于判别性无穷模糊受限玻尔兹曼机模型的HRRP序列识别
2
作者 陈士超 魏靖彪 +4 位作者 范俊 魏玺章 王泽朝 孙谦 刘明 《兵工学报》 EI CAS CSCD 北大核心 2024年第S01期43-50,共8页
针对雷达高分辨率距离像(High Resolution Range Profiles, HRRP)序列数据在受干扰或背景杂波严重时目标识别性能较差的问题,提出一种判别性无穷模糊受限玻尔兹曼机(Discriminative Infinite Fuzzy Re-stricted Boltzmann Machine, Dis-... 针对雷达高分辨率距离像(High Resolution Range Profiles, HRRP)序列数据在受干扰或背景杂波严重时目标识别性能较差的问题,提出一种判别性无穷模糊受限玻尔兹曼机(Discriminative Infinite Fuzzy Re-stricted Boltzmann Machine, Dis-iFRBM)模型。该模型结合判别性受限玻尔兹曼机分类和无穷受限玻尔兹曼机模型复杂度自适应特点,汲取模糊神经网络在低信噪比环境下提取特征更稳定的优点,将模型参数从实数扩展为模糊参数,实现了对HRRP序列数据原始特征的更稳定提取以及对雷达目标的更稳健识别。通过对多个HRRP序列的识别实验,验证了Dis-iFRBM的识别稳定性以及鲁棒性,与其他模型的对比实验验证了所提模型在“噪声”环境中的有效性和优越性。 展开更多
关键词 高分辨率距离像 目标识别 判别性无穷模糊受限玻尔兹曼机 随机排列 噪声数据
下载PDF
一种基于受限玻尔兹曼机的说话人特征提取算法 被引量:19
3
作者 酆勇 熊庆宇 +1 位作者 石为人 曹俊华 《仪器仪表学报》 EI CAS CSCD 北大核心 2016年第2期256-262,共7页
基于总体空间差异模型的身份认证矢量(即i-vector)已经在说话人识别任务中得到了广泛应用。本文提出了一种基于受限玻尔兹曼机(RBM)的说话人特征向量提取方法来替代总体差异建模的特征提取方法。该方法通过训练得到RBM的模型参数,之后... 基于总体空间差异模型的身份认证矢量(即i-vector)已经在说话人识别任务中得到了广泛应用。本文提出了一种基于受限玻尔兹曼机(RBM)的说话人特征向量提取方法来替代总体差异建模的特征提取方法。该方法通过训练得到RBM的模型参数,之后利用隐层输出来表征输入语音超向量的说话人信息。文中比较了不同结构和模块(包括构建RBM的2种单元分布、线性判别分析等)对说话人确认性能的影响。所提方法作为一种新的i-vector特征表示方法,在NIST SRE 2008上取得了和ivector说话人基线系统相当的性能。通过与i-vector基线系统进行融合,系统性能进一步提升。在NIST SRE 2008女性电话语音测试集和男性电话语音测试集上的等错误率分别降至6.83%和4.73%。 展开更多
关键词 说话人确认 身份认证矢量 深度学习 受限玻尔兹曼机 线性判别分析
下载PDF
基于混合判别受限波兹曼机的音乐自动标注算法 被引量:5
4
作者 王诗俊 陈宁 《华东理工大学学报(自然科学版)》 CSCD 北大核心 2017年第4期540-545,共6页
对于音乐自动标注任务,在很多情况下,未标注的歌曲量远远超过已标注的歌曲数据,从而导致训练结果不理想。生成模型能够在某种程度上适应少量数据集的情况,得出较为满意的结果,然而,在有充分数据集的情况下生成模型的效果却劣于判别模型... 对于音乐自动标注任务,在很多情况下,未标注的歌曲量远远超过已标注的歌曲数据,从而导致训练结果不理想。生成模型能够在某种程度上适应少量数据集的情况,得出较为满意的结果,然而,在有充分数据集的情况下生成模型的效果却劣于判别模型。本文提出了一种结合生成模型与判别模型两者优势的面向音乐自动标注的混合判别波兹曼机模型,该模型可明显提升音乐自动标注的准确率。实验结果表明,混合波兹曼机的效果不仅好于传统的机器学习模型,同时,模型在拥有足够训练数据量的情况下与判别模型效果相当,且在训练集较少的情况下效果也好于判别模型。另外,为了防止模型过拟合,还引入了Dropout规则化方法以进一步加强模型的性能。 展开更多
关键词 音乐自动标注 混合判别受限波兹曼机 机器学习 人工智能
下载PDF
基于受限玻尔兹曼机和T-S模型的料位软测量方法的研究 被引量:1
5
作者 郭磊 庞宇松 阎高伟 《科学技术与工程》 北大核心 2015年第31期201-204,共4页
球磨机是火力发电厂的基础设备,可靠测量料位是实现系统优化的关键。针对球磨机音频信号中存在强噪声、非线性等问题,结合受限玻尔兹曼机(RBM)、减法聚类和T-S模糊模型,提出了一种软测量方法。首先采用微调后的受限玻尔兹曼机提取特征,... 球磨机是火力发电厂的基础设备,可靠测量料位是实现系统优化的关键。针对球磨机音频信号中存在强噪声、非线性等问题,结合受限玻尔兹曼机(RBM)、减法聚类和T-S模糊模型,提出了一种软测量方法。首先采用微调后的受限玻尔兹曼机提取特征,去除存在的噪声,然后使用减法聚类辨识模糊模型的初始结构,最后采用T-S模糊模型预测球磨机料位。通过在球磨机运行数据上进行模型验证,验证了该方法的实用性和可行性。 展开更多
关键词 受限玻尔兹曼机 特征提取 减法聚类 T-S模糊模型 球磨机料位
下载PDF
融合生成模型和判别模型的双层RBM运动捕获数据语义识别算法 被引量:2
6
作者 周兵 彭淑娟 柳欣 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2017年第4期689-698,共10页
对人体运动捕获数据底层特征和高层语义之间常常存在语义鸿沟的问题,结合深度学习思想,提出一种融合受限玻尔兹曼机生成模型和判别模型的运动捕获数据语义识别算法.该算法采用双层受限玻尔兹曼机,分别对运动捕获数据进行判别性特征提取... 对人体运动捕获数据底层特征和高层语义之间常常存在语义鸿沟的问题,结合深度学习思想,提出一种融合受限玻尔兹曼机生成模型和判别模型的运动捕获数据语义识别算法.该算法采用双层受限玻尔兹曼机,分别对运动捕获数据进行判别性特征提取(特征提取层)和风格识别(语义判别层),首先考虑到自回归模型对时序信息具有出色的表达能力,构建一种基于单通道三元因子交互的条件限制玻尔兹曼机生成模型,用于提取运动捕捉数据的时空特征信息;然后将提取出的特征与对应的风格标签相耦合,作为语义判别层中受限玻尔兹曼机判别模型的当前帧数据层输入,进行单帧风格识别的训练;最后在获得各帧参数的基础上,在模型顶部加入投票空间实现对运动捕捉序列的风格语义的有效识别.实验结果表明,文中算法具有良好的鲁棒性和可扩展性,能够满足多样化运动序列识别的需求,便于数据的有效重用. 展开更多
关键词 动作捕捉 时空特征 深度学习 受限玻尔兹曼机 判别模型
下载PDF
基于线性判别深度信念网络的人脸表情识别 被引量:4
7
作者 王健 郭敏 肖冰 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第4期28-34,共7页
深度信念网络在人脸表情识别领域表现出很好的性能,但由于其最后一个隐层与分类层之间的初始权值矩阵通常随机生成,这样的权值矩阵不具有判别能力,从而导致经该权值矩阵映射得到的特征不能保证适合于分类任务。为了解决此问题,提出一种... 深度信念网络在人脸表情识别领域表现出很好的性能,但由于其最后一个隐层与分类层之间的初始权值矩阵通常随机生成,这样的权值矩阵不具有判别能力,从而导致经该权值矩阵映射得到的特征不能保证适合于分类任务。为了解决此问题,提出一种新的深度信念网络结构——线性判别深度信念网络,其对传统线性判别分析法进行改进,设计了一个新的类间离散度矩阵,解决了传统线性判别分析法中存在的秩限问题;使用改进的线性判别分析法初始化深度信念网络最后一个隐层和分类层之间的权值矩阵,使网络更适合于分类任务。本文提出的线性判别深度信念网络在JAFFE和Extended Cohn-Kanade人脸表情数据库上分别得到了78.26%和94.48%的识别率。 展开更多
关键词 人脸表情识别 受限玻尔兹曼机 深度信念网络 线性判别分析
下载PDF
基于DRBM和边缘检测的脑部磁共振图像分类 被引量:2
8
作者 杨雪 刘惠义 陈霜霜 《信息技术》 2018年第5期129-132,138,共5页
为提高图像分类精度,文中提出了一种DRBM网络结合边缘检测的图像分类方法。该方法首先进行边缘检测,然后将提取的纹理叠加到原图中,实现图像纹理加强。接着构建可视层-隐层-分类器三层DRBM,实现特征提取并分类。实验证明,相比较传统基... 为提高图像分类精度,文中提出了一种DRBM网络结合边缘检测的图像分类方法。该方法首先进行边缘检测,然后将提取的纹理叠加到原图中,实现图像纹理加强。接着构建可视层-隐层-分类器三层DRBM,实现特征提取并分类。实验证明,相比较传统基于单一特征的分类方法,文中方法取得了较高的分类准确率,具有更好的图像分类性能。 展开更多
关键词 图像分类 DRBM 边缘检测 特征提取 纹理加强
下载PDF
基于自编码网络和聚类的入侵检测技术 被引量:1
9
作者 周康 万良 《计算机技术与发展》 2019年第5期107-111,共5页
针对模糊C均值聚类算法的入侵检测方法易陷入局部最优,受时间和空间复杂度约束,检测速率低并且使用原始数据集容易陷入"维度灾难"等问题,提出了一种基于自编码网络(AN)特征降维结合遗传算法(GA)优化模糊C均值算法的聚类模型(A... 针对模糊C均值聚类算法的入侵检测方法易陷入局部最优,受时间和空间复杂度约束,检测速率低并且使用原始数据集容易陷入"维度灾难"等问题,提出了一种基于自编码网络(AN)特征降维结合遗传算法(GA)优化模糊C均值算法的聚类模型(AN-GA-FCM)。该模型采用多层限制玻尔兹曼机(RBM)将高维、非线性的数据双向映射到低维空间,建立高维空间到低维空间的自编码网络,进而使用自编码网络权值微调重构低维空间数据的最优高维表示。并利用遗传算法优化的FCM初始聚类中心,避免目标函数陷入局部最优。将得到的特征降维数据集通过GA-FCM进行分类并在KDD’99数据集上进行检测,通过与PCA,SVM,Softmax等传统算法的实验对比,结果表明,该模型具有较高的入侵检测准确率和较低的分类检测时间。 展开更多
关键词 模糊C均值 遗传算法 限制玻尔兹曼机 自编码网络 特征降维 双向映射
下载PDF
基于判别式深度置信网络的心律失常自动分类方法 被引量:6
10
作者 宋立新 孙东梓 +1 位作者 王乾 王玉静 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2019年第3期444-452,共9页
现有的心律失常分类方法通常采用人为选取心电图(ECG)信号特征的方式,其特征选取具有主观性,且特征提取复杂,导致分类准确性容易受到影响等。基于以上问题,本文提出了一种基于判别式深度置信网络(DDBNs)的心律失常自动分类新方法。该方... 现有的心律失常分类方法通常采用人为选取心电图(ECG)信号特征的方式,其特征选取具有主观性,且特征提取复杂,导致分类准确性容易受到影响等。基于以上问题,本文提出了一种基于判别式深度置信网络(DDBNs)的心律失常自动分类新方法。该方法所构建的生成受限玻尔兹曼机(GRBM)自动提取心拍信号形态特征,然后引入具有特征学习和分类能力的判别式受限玻尔兹曼机(DRBM),依据提取的形态特征和RR间期特征进行心律失常分类。为了进一步提高DDBNs的分类性能,本文将DDBNs转换为使用柔性最大值(Softmax)回归层进行监督分类的深度神经网络(DNN),通过反向传播对网络进行微调。最后,采用麻省理工学院与贝斯以色列医院心律失常数据库(MIT-BIHAR)进行实验验证,对于数据来源一致的训练集和测试集,该方法整体分类精度可达99.84%±0.04%;对于数据来源非一致的训练集和测试集,通过主动学习(AL)方法扩充少量训练集,该方法整体分类精度可达99.31%±0.23%。实验结果表明了该方法在心律失常自动特征提取和分类上的有效性,为深度学习自动提取ECG信号特征及分类提供了一种新的解决方法。 展开更多
关键词 心律失常 判别式深度置信网络 受限玻尔兹曼机 特征提取 柔性最大值回归层
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部