期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Underwater Pulse Waveform Recognition Based on Hash Aggregate Discriminant Network
1
作者 WANG Fangchen ZHONG Guoqiang WANG Liang 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第3期654-660,共7页
Underwater pulse waveform recognition is an important method for underwater object detection.Most existing works focus on the application of traditional pattern recognition methods,which ignore the time-and space-vary... Underwater pulse waveform recognition is an important method for underwater object detection.Most existing works focus on the application of traditional pattern recognition methods,which ignore the time-and space-varying characteristics in sound propagation channels and cannot easily extract valuable waveform features.Sound propagation channels in seawater are time-and space-varying convolutional channels.In the extraction of the waveform features of underwater acoustic signals,the effect of high-accuracy underwater acoustic signal recognition is identified by eliminating the influence of time-and space-varying convolutional channels to the greatest extent possible.We propose a hash aggregate discriminative network(HADN),which combines hash learning and deep learning to minimize the time-and space-varying effects on convolutional channels and adaptively learns effective underwater waveform features to achieve high-accuracy underwater pulse waveform recognition.In the extraction of the hash features of acoustic signals,a discrete constraint between clusters within a hash feature class is introduced.This constraint can ensure that the influence of convolutional channels on hash features is minimized.In addition,we design a new loss function called aggregate discriminative loss(AD-loss).The use of AD-loss and softmax-loss can increase the discriminativeness of the learned hash features.Experimental results show that on pool and ocean datasets,which were collected in pools and oceans,respectively,by using acoustic collectors,the proposed HADN performs better than other comparative models in terms of accuracy and mAP. 展开更多
关键词 convolutional channel hash aggregate discriminative network aggregate discriminant loss waveform recognition
下载PDF
Learning a Discriminative Feature Attention Network for pancreas CT segmentation
2
作者 HUANG Mei-xiang WANG Yuan-jin +2 位作者 HUANG Chong-fei YUAN Jing KONG De-xing 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2022年第1期73-90,共18页
Accurate pancreas segmentation is critical for the diagnosis and management of diseases of the pancreas. It is challenging to precisely delineate pancreas due to the highly variations in volume, shape and location. In... Accurate pancreas segmentation is critical for the diagnosis and management of diseases of the pancreas. It is challenging to precisely delineate pancreas due to the highly variations in volume, shape and location. In recent years, coarse-to-fine methods have been widely used to alleviate class imbalance issue and improve pancreas segmentation accuracy. However,cascaded methods could be computationally intensive and the refined results are significantly dependent on the performance of its coarse segmentation results. To balance the segmentation accuracy and computational efficiency, we propose a Discriminative Feature Attention Network for pancreas segmentation, to effectively highlight pancreas features and improve segmentation accuracy without explicit pancreas location. The final segmentation is obtained by applying a simple yet effective post-processing step. Two experiments on both public NIH pancreas CT dataset and abdominal BTCV multi-organ dataset are individually conducted to show the effectiveness of our method for 2 D pancreas segmentation. We obtained average Dice Similarity Coefficient(DSC) of 82.82±6.09%, average Jaccard Index(JI) of 71.13± 8.30% and average Symmetric Average Surface Distance(ASD) of 1.69 ± 0.83 mm on the NIH dataset. Compared to the existing deep learning-based pancreas segmentation methods, our experimental results achieve the best average DSC and JI value. 展开更多
关键词 attention mechanism discriminative Feature Attention network Improved Refinement Residual Block pancreas CT segmentation
下载PDF
Medical Diagnosis System Based on Fast-weights Scheme 被引量:1
3
作者 TIAN Shining LU Jihua +1 位作者 GU Boyu WANG Huan 《Instrumentation》 2020年第1期51-57,共7页
Clinical examination data often have the features of carrying vague information,missing data and incomplete examination records,which lead to higher probabilities of misdiagnosis.A variational recursive-discriminant j... Clinical examination data often have the features of carrying vague information,missing data and incomplete examination records,which lead to higher probabilities of misdiagnosis.A variational recursive-discriminant joint model with fast weights(FWs)scheme is proposed.MIMIC-III data sets are trained and tested,and the results are used to diagnosing.Variational recurrent neural network(VRNN)with FWs can better obtain the temporal features with partly missing data,and discriminant neural network(DNN)is for decision.Moreover,layer regularization(LN)avoids the overflow of loss function and stabilize the dynamic parameters of each layer.For the simulations,10 laboratory tests were selected to predict 10 diseases,1600 samples and 400 samples were used for training and testing,respectively.The test accuracy of disease diagnosis without FWs is 72.55%,and that with FWs is 85.80%.Simulations reveal that the FWs mechanism can effectively optimize the system model,abstracting the features for diagnose,and significantly improve the accuracy of decision-making. 展开更多
关键词 Fast Weights Scheme Discriminant Neural network Variational Recurrent Neural network Diagnosis Accuracy
下载PDF
Using discriminant analysis to detect intrusions in external communication for self-driving vehicles
4
作者 Khattab M.Ali Alheeti Anna Gruebler Klaus McDonald-Maier 《Digital Communications and Networks》 SCIE 2017年第3期180-187,共8页
Security systems are a necessity for the deployment of smart vehicles in our society. Security in vehicular ad hoe networks is crucial to the reliable exchange of information and control data. In this paper, we propos... Security systems are a necessity for the deployment of smart vehicles in our society. Security in vehicular ad hoe networks is crucial to the reliable exchange of information and control data. In this paper, we propose an intelligent Intrusion Detection System (IDS) to protect the external communication of self-driving and semi self-driving vehicles. This technology has the ability to detect Denial of Service (DOS) and black hole attacks on vehicular ad hoe networks (VANETs). The advantage of the proposed IDS over existing security systems is that it detects attacks before they causes significant damage. The intrusion prediction technique is based on Linear Discriminant Analysis (LDA) and Quadratic Diseriminant Analysis (QDA) which are used to predict attacks based on observed vehicle behavior. We perform simulations using Network Simulator 2 to demonstrate that the IDS achieves a low rate of false alarms and high accuracy in detection. 展开更多
关键词 Secure communication Vehicle ad hoc networks IDS Self-driving vehicles Linear and quadratic discriminant analysis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部