The most widely farmed fruit in the world is mango.Both the production and quality of the mangoes are hampered by many diseases.These diseases need to be effectively controlled and mitigated.Therefore,a quick and accu...The most widely farmed fruit in the world is mango.Both the production and quality of the mangoes are hampered by many diseases.These diseases need to be effectively controlled and mitigated.Therefore,a quick and accurate diagnosis of the disorders is essential.Deep convolutional neural networks,renowned for their independence in feature extraction,have established their value in numerous detection and classification tasks.However,it requires large training datasets and several parameters that need careful adjustment.The proposed Modified Dense Convolutional Network(MDCN)provides a successful classification scheme for plant diseases affecting mango leaves.This model employs the strength of pre-trained networks and modifies them for the particular context of mango leaf diseases by incorporating transfer learning techniques.The data loader also builds mini-batches for training the models to reduce training time.Finally,optimization approaches help increase the overall model’s efficiency and lower computing costs.MDCN employed on the MangoLeafBD Dataset consists of a total of 4,000 images.Following the experimental results,the proposed system is compared with existing techniques and it is clear that the proposed algorithm surpasses the existing algorithms by achieving high performance and overall throughput.展开更多
In India’s economy, agriculture has been the most significantcontributor. Despite the fact that agriculture’s contribution is decreasing asthe world’s population grows, it continues to be the most important sourceo...In India’s economy, agriculture has been the most significantcontributor. Despite the fact that agriculture’s contribution is decreasing asthe world’s population grows, it continues to be the most important sourceof employment with a little margin of difference. As a result, there is apressing need to pick up the pace in order to achieve competitive, productive,diverse, and long-term agriculture. Plant disease misinterpretations can resultin the incorrect application of pesticides, causing crop harm. As a result,early detection of infections is critical as well as cost-effective for farmers.To diagnose the disease at an earlier stage, appropriate segmentation of thediseased component from the leaf in an accurate manner is critical. However,due to the existence of noise in the digitally captured image, as well asvariations in backdrop, shape, and brightness in sick photographs, effectiverecognition has become a difficult task. Leaf smut, Bacterial blight andBrown spot diseases are segmented and classified using diseased Apple (20),Cercospora (60), Rice (100), Grape (140), and wheat (180) leaf photos in thesuggested work. In addition, a superior segmentation technique for the ROIfrom sick leaves with living backdrop is presented here. Textural features of thesegmented ROI, such as 1st and 2nd order WPCA Features, are discoveredafter segmentation. This comprises 1st order textural features like kurtosis,skewness, mean and variance as well as 2nd procedure textural features likesmoothness, energy, correlation, homogeneity, contrast, and entropy. Finally,the segmented region of interest’s textural features is fed into four differentclassifiers, with the Enhanced Deep Convolutional Neural Network provingto be the most precise, with a 96.1% accuracy.展开更多
Although convolutional neural network(CNN)paradigms have expanded to transfer learning and ensemble models from original individual CNN architectures,few studies have focused on the performance comparison of the appli...Although convolutional neural network(CNN)paradigms have expanded to transfer learning and ensemble models from original individual CNN architectures,few studies have focused on the performance comparison of the applicability of these techniques in detecting and localizing rice diseases.Moreover,most CNN-based rice disease detection studies only considered a small number of diseases in their experiments.Both these shortcomings were addressed in this study.In this study,a rice disease classification comparison of six CNN-based deep-learning architectures(DenseNet121,Inceptionv3,MobileNetV2,resNext101,Resnet152V,and Seresnext101)was conducted using a database of nine of the most epidemic rice diseases in Bangladesh.In addition,we applied a transfer learning approach to DenseNet121,MobileNetV2,Resnet152V,Seresnext101,and an ensemble model called DEX(Densenet121,EfficientNetB7,and Xception)to compare the six individual CNN networks,transfer learning,and ensemble techniques.The results suggest that the ensemble framework provides the best accuracy of 98%,and transfer learning can increase the accuracy by 17%from the results obtained by Seresnext101 in detecting and localizing rice leaf diseases.The high accuracy in detecting and categorisation rice leaf diseases using CNN suggests that the deep CNN model is promising in the plant disease detection domain and can significantly impact the detection of diseases in real-time agricultural systems.This research is significant for farmers in rice-growing countries,as like many other plant diseases,rice diseases require timely and early identification of infected diseases and this research develops a rice leaf detection system based on CNN that is expected to help farmers to make fast decisions to protect their agricultural yields and quality.展开更多
文摘The most widely farmed fruit in the world is mango.Both the production and quality of the mangoes are hampered by many diseases.These diseases need to be effectively controlled and mitigated.Therefore,a quick and accurate diagnosis of the disorders is essential.Deep convolutional neural networks,renowned for their independence in feature extraction,have established their value in numerous detection and classification tasks.However,it requires large training datasets and several parameters that need careful adjustment.The proposed Modified Dense Convolutional Network(MDCN)provides a successful classification scheme for plant diseases affecting mango leaves.This model employs the strength of pre-trained networks and modifies them for the particular context of mango leaf diseases by incorporating transfer learning techniques.The data loader also builds mini-batches for training the models to reduce training time.Finally,optimization approaches help increase the overall model’s efficiency and lower computing costs.MDCN employed on the MangoLeafBD Dataset consists of a total of 4,000 images.Following the experimental results,the proposed system is compared with existing techniques and it is clear that the proposed algorithm surpasses the existing algorithms by achieving high performance and overall throughput.
文摘In India’s economy, agriculture has been the most significantcontributor. Despite the fact that agriculture’s contribution is decreasing asthe world’s population grows, it continues to be the most important sourceof employment with a little margin of difference. As a result, there is apressing need to pick up the pace in order to achieve competitive, productive,diverse, and long-term agriculture. Plant disease misinterpretations can resultin the incorrect application of pesticides, causing crop harm. As a result,early detection of infections is critical as well as cost-effective for farmers.To diagnose the disease at an earlier stage, appropriate segmentation of thediseased component from the leaf in an accurate manner is critical. However,due to the existence of noise in the digitally captured image, as well asvariations in backdrop, shape, and brightness in sick photographs, effectiverecognition has become a difficult task. Leaf smut, Bacterial blight andBrown spot diseases are segmented and classified using diseased Apple (20),Cercospora (60), Rice (100), Grape (140), and wheat (180) leaf photos in thesuggested work. In addition, a superior segmentation technique for the ROIfrom sick leaves with living backdrop is presented here. Textural features of thesegmented ROI, such as 1st and 2nd order WPCA Features, are discoveredafter segmentation. This comprises 1st order textural features like kurtosis,skewness, mean and variance as well as 2nd procedure textural features likesmoothness, energy, correlation, homogeneity, contrast, and entropy. Finally,the segmented region of interest’s textural features is fed into four differentclassifiers, with the Enhanced Deep Convolutional Neural Network provingto be the most precise, with a 96.1% accuracy.
文摘Although convolutional neural network(CNN)paradigms have expanded to transfer learning and ensemble models from original individual CNN architectures,few studies have focused on the performance comparison of the applicability of these techniques in detecting and localizing rice diseases.Moreover,most CNN-based rice disease detection studies only considered a small number of diseases in their experiments.Both these shortcomings were addressed in this study.In this study,a rice disease classification comparison of six CNN-based deep-learning architectures(DenseNet121,Inceptionv3,MobileNetV2,resNext101,Resnet152V,and Seresnext101)was conducted using a database of nine of the most epidemic rice diseases in Bangladesh.In addition,we applied a transfer learning approach to DenseNet121,MobileNetV2,Resnet152V,Seresnext101,and an ensemble model called DEX(Densenet121,EfficientNetB7,and Xception)to compare the six individual CNN networks,transfer learning,and ensemble techniques.The results suggest that the ensemble framework provides the best accuracy of 98%,and transfer learning can increase the accuracy by 17%from the results obtained by Seresnext101 in detecting and localizing rice leaf diseases.The high accuracy in detecting and categorisation rice leaf diseases using CNN suggests that the deep CNN model is promising in the plant disease detection domain and can significantly impact the detection of diseases in real-time agricultural systems.This research is significant for farmers in rice-growing countries,as like many other plant diseases,rice diseases require timely and early identification of infected diseases and this research develops a rice leaf detection system based on CNN that is expected to help farmers to make fast decisions to protect their agricultural yields and quality.