The interaction between the gut microbiota and cyclic adenosine monophosphate(cAMP)-protein kinase A(PKA)signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enh...The interaction between the gut microbiota and cyclic adenosine monophosphate(cAMP)-protein kinase A(PKA)signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enhances communication along the gut–brain axis.The gut microbiota influences the cAMP-PKA signaling pathway through its metabolites,which activates the vagus nerve and modulates the immune and neuroendocrine systems.Conversely,alterations in the cAMP-PKA signaling pathway can affect the composition of the gut microbiota,creating a dynamic network of microbial-host interactions.This reciprocal regulation affects neurodevelopment,neurotransmitter control,and behavioral traits,thus playing a role in the modulation of neurological diseases.The coordinated activity of the gut microbiota and the cAMP-PKA signaling pathway regulates processes such as amyloid-β protein aggregation,mitochondrial dysfunction,abnormal energy metabolism,microglial activation,oxidative stress,and neurotransmitter release,which collectively influence the onset and progression of neurological diseases.This study explores the complex interplay between the gut microbiota and cAMP-PKA signaling pathway,along with its implications for potential therapeutic interventions in neurological diseases.Recent pharmacological research has shown that restoring the balance between gut flora and cAMP-PKA signaling pathway may improve outcomes in neurodegenerative diseases and emotional disorders.This can be achieved through various methods such as dietary modifications,probiotic supplements,Chinese herbal extracts,combinations of Chinese herbs,and innovative dosage forms.These findings suggest that regulating the gut microbiota and cAMP-PKA signaling pathway may provide valuable evidence for developing novel therapeutic approaches for neurodegenerative diseases.展开更多
Hippocampal neuronal loss causes cognitive dysfunction in Alzheimer’s disease.Adult hippocampal neurogenesis is reduced in patients with Alzheimer’s disease.Exercise stimulates adult hippocampal neurogenesis in rode...Hippocampal neuronal loss causes cognitive dysfunction in Alzheimer’s disease.Adult hippocampal neurogenesis is reduced in patients with Alzheimer’s disease.Exercise stimulates adult hippocampal neurogenesis in rodents and improves memory and slows cognitive decline in patients with Alzheimer’s disease.However,the molecular pathways for exercise-induced adult hippocampal neurogenesis and improved cognition in Alzheimer’s disease are poorly understood.Recently,regulator of G protein signaling 6(RGS6)was identified as the mediator of voluntary running-induced adult hippocampal neurogenesis in mice.Here,we generated novel RGS6fl/fl;APP_(SWE) mice and used retroviral approaches to examine the impact of RGS6 deletion from dentate gyrus neuronal progenitor cells on voluntary running-induced adult hippocampal neurogenesis and cognition in an amyloid-based Alzheimer’s disease mouse model.We found that voluntary running in APP_(SWE) mice restored their hippocampal cognitive impairments to that of control mice.This cognitive rescue was abolished by RGS6 deletion in dentate gyrus neuronal progenitor cells,which also abolished running-mediated increases in adult hippocampal neurogenesis.Adult hippocampal neurogenesis was reduced in sedentary APP_(SWE) mice versus control mice,with basal adult hippocampal neurogenesis reduced by RGS6 deletion in dentate gyrus neural precursor cells.RGS6 was expressed in neurons within the dentate gyrus of patients with Alzheimer’s disease with significant loss of these RGS6-expressing neurons.Thus,RGS6 mediated voluntary running-induced rescue of impaired cognition and adult hippocampal neurogenesis in APP_(SWE) mice,identifying RGS6 in dentate gyrus neural precursor cells as a possible therapeutic target in Alzheimer’s disease.展开更多
BACKGROUND Mixed lineage kinase domain-like protein(MLKL)serves as a critical mediator in necroptosis,a form of regulated cell death linked to various liver diseases.This study aims to specifically investigate the rol...BACKGROUND Mixed lineage kinase domain-like protein(MLKL)serves as a critical mediator in necroptosis,a form of regulated cell death linked to various liver diseases.This study aims to specifically investigate the role of MLKL’s adenosine triphosphate(ATP)-binding pocket in facilitating necroptosis-independent pathways that may contribute to liver disease progression.By focusing on this mechanism,we seek to identify potential therapeutic targets that can modulate MLKL activity,offering new strategies for the prevention and treatment of liver-related pathologies.AIM To investigate the possibility of using the ATP-binding pocket-associated,necro-ptosis-independent MLKL pathway as a target for liver diseases.METHODS Cell death following necroptosis stimuli was evaluated using cell proliferation assays,flow cytometry,and electron microscopy in various cells.The human liver organoid system was used to evaluate whether the MLKL ATP pocket-binding inhibitor could attenuate inflammation.Additionally,alcoholic and non-alcoholic fatty liver diseases animal models were used to determine whether MLKL ATP pocket inhibitors could attenuate liver injury.RESULTS While an MLKL ATP pocket-binding inhibitor did not prevent necroptosis-induced cell death in RAW 264.7 cells,it did reduce the necroptosis-led expression of CXCL2,ICAM,and VCAM.Notably,MLKL ATP pocket inhibitor diminishes the expression of CXCL2,ICAM,and VCAM by inhibiting the IκB kinase and nuclear factor kappa-B pathways without inducing necroptosis-induced cell death in two-dimensional cell culture as well as the human-derived liver organoid system.Although MLKL ATP-binding inhibitor was ineffective in non-alcoholic fatty liver disease animal models,MLKL ATP-binding inhibitor attenuated hepatic inflammation in the alcoholic liver disease model.CONCLUSION MLKL ATP pocket-binding inhibitor exerted anti-inflammatory effects through the necroptosis-independent MLKL pathway in an animal model of alcoholic liver disease.展开更多
The impact of apolipoprotein E(ApoE)isoforms on sporadic Alzheimer's disease has long been studied;however,the influences of apolipoprotein E gene(APOE)on healthy and pathological human brains are not fully unders...The impact of apolipoprotein E(ApoE)isoforms on sporadic Alzheimer's disease has long been studied;however,the influences of apolipoprotein E gene(APOE)on healthy and pathological human brains are not fully understood.ApoE exists as three common isoforms(ApoE2,ApoE3,and ApoE4),which differ in two amino acid residues.Traditionally,ApoE binds cholesterol and phospholipids and ApoE isoforms display diffe rent affinities for their receptors,lipids transport and distribution in the brain and periphery.The role of ApoE in the human depends on ApoE isoforms,brain regions,aging,and neural injury.APOE E4 is the strongest genetic risk factor for sporadic Alzheimer's disease,considering its role in influencing amyloid-beta metabolism.The exact mechanisms by which APOE gene variants may increase or decrease Alzheimer's disease risk are not fully understood,but APOE was also known to affect directly and indirectly tau-mediated neurodegeneration,lipids metabolism,neurovascular unit,and microglial function.Consistent with the biological function of ApoE,ApoE4 isoform significantly alte red signaling pathways associated with cholesterol homeostasis,transport,and myelination.Also,the rare protective APOE variants confirm that ApoE plays an important role in Alzheimer's disease pathogenesis.The objectives of the present mini-review were to describe classical and new roles of various ApoE isoforms in Alzheimer's disease pathophysiology beyond the deposition of amyloid-beta and to establish a functional link between APOE,brain function,and memory,from a molecular to a clinical level.APOE genotype also exerted a heterogeneous effect on clinical Alzheimer's disease phenotype and its outcomes.Not only in learning and memory but also in neuro psychiatric symptoms that occur in a premorbid condition.Cla rifying the relationships between Alzheimer's disease-related pathology with neuropsychiatric symptoms,particularly suicidal ideation in Alzheimer's disease patients,may be useful for elucidating also the underlying pathophysiological process and its prognosis.Also,the effects of anti-amyloid-beta drugs,recently approved for the treatment of Alzheimer's disease,could be influenced by the APOE genotype.展开更多
Dementia is a group of diseases,including Alzheimer's disease(AD),vascular dementia,Lewy body dementia,frontotemporal dementia,Parkinson's disease dementia,metabolic dementia and toxic dementia.The treatment o...Dementia is a group of diseases,including Alzheimer's disease(AD),vascular dementia,Lewy body dementia,frontotemporal dementia,Parkinson's disease dementia,metabolic dementia and toxic dementia.The treatment of dementia mainly includes symptomatic treatment by controlling the primary disease and accompanying symptoms,nutritional support therapy for repairing nerve cells,psychological auxiliary treatment,and treatment that improves cognitive function through drugs.Among them,drug therapy to improve cognitive function is important.This review focuses on introducing and commenting on some recent progress in exploring drugs to improve cognitive function,especially the new progress in drug treatment for AD.We mainly discuss the opportunities and challenges in finding and developing new therapeutic drugs from the aspects of acetylcholinesterase,N-methyl-D-aspartate glutamate receptor,amyloid protein,tau protein and chronic immune inflammation.展开更多
γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the ...γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the Notch family of cell-surface receptors.Mutations inγ-secretase and amyloid precursor protein lead to early-onset familial Alzheimer’s disease.γ-Secretase has thus served as a critical drug target for treating familial Alzheimer’s disease and the more common late-onset Alzheimer’s disease as well.However,critical gaps remain in understanding the mechanisms of processive proteolysis of substrates,the effects of familial Alzheimer’s disease mutations,and allosteric modulation of substrate cleavage byγ-secretase.In this review,we focus on recent studies of structural dynamic mechanisms ofγ-secretase.Different mechanisms,including the“Fit-Stay-Trim,”“Sliding-Unwinding,”and“Tilting-Unwinding,”have been proposed for substrate proteolysis of amyloid precursor protein byγ-secretase based on all-atom molecular dynamics simulations.While an incorrect registry of the Notch1 substrate was identified in the cryo-electron microscopy structure of Notch1-boundγ-secretase,molecular dynamics simulations on a resolved model of Notch1-boundγ-secretase that was reconstructed using the amyloid precursor protein-boundγ-secretase as a template successfully capturedγ-secretase activation for proper cleavages of both wildtype and mutant Notch,being consistent with biochemical experimental findings.The approach could be potentially applied to decipher the processing mechanisms of various substrates byγ-secretase.In addition,controversy over the effects of familial Alzheimer’s disease mutations,particularly the issue of whether they stabilize or destabilizeγ-secretase-substrate complexes,is discussed.Finally,an outlook is provided for future studies ofγ-secretase,including pathways of substrate binding and product release,effects of modulators on familial Alzheimer’s disease mutations of theγ-secretase-substrate complexes.Comprehensive understanding of the functional mechanisms ofγ-secretase will greatly facilitate the rational design of effective drug molecules for treating familial Alzheimer’s disease and perhaps Alzheimer’s disease in general.展开更多
Irisin is a myokine that is generated by cleavage of the membrane protein fibronectin type Ⅲ domain-containing protein 5(FNDC5) in response to physical exercise. Studies reveal that irisin/FNDC5 has neuroprotective f...Irisin is a myokine that is generated by cleavage of the membrane protein fibronectin type Ⅲ domain-containing protein 5(FNDC5) in response to physical exercise. Studies reveal that irisin/FNDC5 has neuroprotective functions against Alzheimer's disease, the most common form of dementia in the elderly, by improving cognitive function and reducing amyloid-β and tau pathologies as well as neuroinflammation in cell culture or animal models of Alzheimer's disease. Although current and ongoing studies on irisin/FNDC5 show promising results, further mechanistic studies are required to clarify its potential as a meaningful therapeutic target for alleviating Alzheimer's disease. We recently found that irisin treatment reduces amyloid-β pathology by increasing the activity/levels of amyloid-β-degrading enzyme neprilysin secreted from astrocytes. Herein, we present an overview of irisin/FNDC5's protective roles and mechanisms against Alzheimer's disease.展开更多
Parkinson’s disease is a common neurodegenerative disorder that is associated with abnormal aggregation and accumulation of neurotoxic proteins,includingα-synuclein,amyloid-β,and tau,in addition to the impaired eli...Parkinson’s disease is a common neurodegenerative disorder that is associated with abnormal aggregation and accumulation of neurotoxic proteins,includingα-synuclein,amyloid-β,and tau,in addition to the impaired elimination of these neurotoxic protein.Atypical parkinsonism,which has the same clinical presentation and neuropathology as Parkinson’s disease,expands the disease landscape within the continuum of Parkinson’s disease and related disorders.The glymphatic system is a waste clearance system in the brain,which is responsible for eliminating the neurotoxic proteins from the interstitial fluid.Impairment of the glymphatic system has been proposed as a significant contributor to the development and progression of neurodegenerative disease,as it exacerbates the aggregation of neurotoxic proteins and deteriorates neuronal damage.Therefore,impairment of the glymphatic system could be considered as the final common pathway to neurodegeneration.Previous evidence has provided initial insights into the potential effect of the impaired glymphatic system on Parkinson’s disease and related disorders;however,many unanswered questions remain.This review aims to provide a comprehensive summary of the growing literature on the glymphatic system in Parkinson’s disease and related disorders.The focus of this review is on identifying the manifestations and mechanisms of interplay between the glymphatic system and neurotoxic proteins,including loss of polarization of aquaporin-4 in astrocytic endfeet,sleep and circadian rhythms,neuroinflammation,astrogliosis,and gliosis.This review further delves into the underlying pathophysiology of the glymphatic system in Parkinson’s disease and related disorders,and the potential implications of targeting the glymphatic system as a novel and promising therapeutic strategy.展开更多
Alzheimer's disease,the primary cause of dementia,is characterized by neuropathologies,such as amyloid plaques,synaptic and neuronal degeneration,and neurofibrillary tangles.Although amyloid plaques are the primar...Alzheimer's disease,the primary cause of dementia,is characterized by neuropathologies,such as amyloid plaques,synaptic and neuronal degeneration,and neurofibrillary tangles.Although amyloid plaques are the primary characteristic of Alzheimer's disease in the central nervous system and peripheral organs,targeting amyloid-beta clearance in the central nervous system has shown limited clinical efficacy in Alzheimer's disease treatment.Metabolic abnormalities are commonly observed in patients with Alzheimer's disease.The liver is the primary peripheral organ involved in amyloid-beta metabolism,playing a crucial role in the pathophysiology of Alzheimer's disease.Notably,impaired cholesterol metabolism in the liver may exacerbate the development of Alzheimer's disease.In this review,we explore the underlying causes of Alzheimer's disease and elucidate the role of the liver in amyloid-beta clearance and cholesterol metabolism.Furthermore,we propose that restoring normal cholesterol metabolism in the liver could represent a promising therapeutic strategy for addressing Alzheimer's disease.展开更多
Several promising plasma biomarker proteins,such as amyloid-β(Aβ),tau,neurofilament light chain,and glial fibrillary acidic protein,are widely used for the diagnosis of neurodegenerative diseases.However,little is k...Several promising plasma biomarker proteins,such as amyloid-β(Aβ),tau,neurofilament light chain,and glial fibrillary acidic protein,are widely used for the diagnosis of neurodegenerative diseases.However,little is known about the long-term stability of these biomarker proteins in plasma samples stored at-80°C.We aimed to explore how storage time would affect the diagnostic accuracy of these biomarkers using a large cohort.Plasma samples from 229 cognitively unimpaired individuals,encompassing healthy controls and those experiencing subjective cognitive decline,as well as 99 patients with cognitive impairment,comprising those with mild cognitive impairment and dementia,were acquired from the Sino Longitudinal Study on Cognitive Decline project.These samples were stored at-80°C for up to 6 years before being used in this study.Our results showed that plasma levels of Aβ42,Aβ40,neurofilament light chain,and glial fibrillary acidic protein were not significantly correlated with sample storage time.However,the level of total tau showed a negative correlation with sample storage time.Notably,in individuals without cognitive impairment,plasma levels of total protein and tau phosphorylated protein threonine 181(p-tau181)also showed a negative correlation with sample storage time.This was not observed in individuals with cognitive impairment.Consequently,we speculate that the diagnostic accuracy of plasma p-tau181 and the p-tau181 to total tau ratio may be influenced by sample storage time.Therefore,caution is advised when using these plasma biomarkers for the identification of neurodegenerative diseases,such as Alzheimer's disease.Furthermore,in cohort studies,it is important to consider the impact of storage time on the overall results.展开更多
The endoplasmic reticulum,a key cellular organelle,regulates a wide variety of cellular activities.Endoplasmic reticulum autophagy,one of the quality control systems of the endoplasmic reticulum,plays a pivotal role i...The endoplasmic reticulum,a key cellular organelle,regulates a wide variety of cellular activities.Endoplasmic reticulum autophagy,one of the quality control systems of the endoplasmic reticulum,plays a pivotal role in maintaining endoplasmic reticulum homeostasis by controlling endoplasmic reticulum turnover,remodeling,and proteostasis.In this review,we briefly describe the endoplasmic reticulum quality control system,and subsequently focus on the role of endoplasmic reticulum autophagy,emphasizing the spatial and temporal mechanisms underlying the regulation of endoplasmic reticulum autophagy according to cellular requirements.We also summarize the evidence relating to how defective or abnormal endoplasmic reticulum autophagy contributes to the pathogenesis of neurodegenerative diseases.In summary,this review highlights the mechanisms associated with the regulation of endoplasmic reticulum autophagy and how they influence the pathophysiology of degenerative nerve disorders.This review would help researchers to understand the roles and regulatory mechanisms of endoplasmic reticulum-phagy in neurodegenerative disorders.展开更多
BACKGROUND The NOD-like receptor thermal protein domain associated protein 3(NLRP3)inflammasome may play an important role in diabetic kidney disease(DKD).However,the exact link remains unclear.AIM To investigate the ...BACKGROUND The NOD-like receptor thermal protein domain associated protein 3(NLRP3)inflammasome may play an important role in diabetic kidney disease(DKD).However,the exact link remains unclear.AIM To investigate the role of the NLRP3 inflammasome in DKD.METHODS Using datasets from the Gene Expression Omnibus database,30 NLRP3 inflammasome-related genes were identified.Differentially expressed genes were selected using differential expression analysis,whereas intersecting genes were selected based on overlapping differentially expressed genes and NLRP3 inflammasome-related genes.Subsequently,three machine learning algorithms were used to screen genes,and biomarkers were identified by overlapping the genes from the three algorithms.Potential biomarkers were validated by western blotting in a db/db mouse model of diabetes.RESULTS Two biomarkers,sirtuin 2(SIRT2)and caspase 1(CASP1),involved in the Leishmania infection pathway were identified.Both biomarkers were expressed in endothelial cells.Pseudo-temporal analysis based on endothelial cells showed that DKD mostly occurs during the mid-differentiation stage.Western blotting results showed that CASP1 expression was higher in the DKD group than in the control group(P<0.05),and SIRT2 content decreased(P<0.05).CONCLUSION SIRT2 and CASP1 provide a potential theoretical basis for DKD treatment.展开更多
In this editorial,we comment on the article by Liu et al published in the recent issue of the World Journal of Diabetes(Relationship between GCKR gene rs780094 polymorphism and type 2 diabetes with albuminuria).Type 2...In this editorial,we comment on the article by Liu et al published in the recent issue of the World Journal of Diabetes(Relationship between GCKR gene rs780094 polymorphism and type 2 diabetes with albuminuria).Type 2 diabetes mellitus(T2DM)is a chronic disorder characterized by dysregulated glucose homeostasis.The persistent elevated blood glucose level in T2DM significantly increases the risk of developing severe complications,including cardiovascular disease,re-tinopathy,neuropathy,and nephropathy.T2DM arises from a complex interplay between genetic,epigenetic,and environmental factors.Global genomic studies have identified numerous genetic variations associated with an increased risk of T2DM.Specifically,variations within the glucokinase regulatory protein(GCKR)gene have been linked to heightened susceptibility to T2DM and its associated complications.The clinical trial by Liu et al further elucidates the role of the GCKR rs780094 polymorphism in T2DM and nephropathy development.Their findings demonstrate that individuals carrying the CT or TT genotype at the GCKR rs780094 locus are at a higher risk of developing T2DM with albuminuria compared to those with the CC genotype.These findings highlight the importance of genetic testing and risk assessment in T2DM to develop effective preventive strategies and personalized treatment plans.展开更多
BACKGROUND The prevalence of metabolic dysfunction-associated fatty liver disease(MAFLD)is rapidly increasing,currently affecting approximately 25%of the global population.Liver fibrosis represents a crucial stage in ...BACKGROUND The prevalence of metabolic dysfunction-associated fatty liver disease(MAFLD)is rapidly increasing,currently affecting approximately 25%of the global population.Liver fibrosis represents a crucial stage in the development of MAFLD,with advanced liver fibrosis elevating the risks of cirrhosis and hepatocellular carcinoma.Simple serum markers are less effective in diagnosing liver fibrosis compared to more complex markers.However,imaging techniques like transient elastography face limitations in clinical application due to equipment and technical constraints.Consequently,it is imperative to identify a straightforward yet effective method for assessing MAFLD-associated liver fibrosis.AIM To investigate the predictive value of angiopoietin-like protein 8(ANGPTL8)in MAFLD and its progression.METHODS We analyzed 160 patients who underwent abdominal ultrasonography in the Endocrinology Department,Xiaogan Central Hospital affiliated to Wuhan University of Science and Technology,during September 2021-July 2022.Using abdominal ultrasonography and MAFLD diagnostic criteria,among the 160 patients,80 patients(50%)were diagnosed with MAFLD.The MAFLD group was divided into the liver fibrosis group(n=23)and non-liver fibrosis group(n=57)by using a cut-off fibrosis-4 index≥1.45.Logistical regression was used to analyze the risk of MAFLD and the risk factors for its progression.Receiver operating characteristic curves were used to evaluate the predictive value of serum ANGPTL8 in MAFLD and its progression.RESULTS Compared with non-MAFLD patients,MAFLD patients had higher serum ANGPTL8 and triglyceride-glucose(TyG)index(both P<0.05).Serum ANGPTL8(r=0.576,P<0.001)and TyG index(r=0.473,P<0.001)were positively correlated with MAFLD.Serum ANGPTL8 was a risk factor for MAFLD[odds ratio(OR):1.123,95%confidence interval(CI):1.066-1.184,P<0.001).Serum ANGPTL8 and ANGPTL8+TyG index predicted MAFLD[area under the curve(AUC):0.832 and 0.886,respectively;both P<0.05].Compared with MAFLD patients without fibrosis,those with fibrosis had higher serum ANGPTL8 and TyG index(both P<0.05),and both parameters were positively correlated with MAFLD-associated fibrosis.Elevated serum ANGPTL8(OR:1.093,95%CI:1.044-1.144,P<0.001)and TyG index(OR:2.383,95%CI:1.199-4.736,P<0.013)were risk factors for MAFLD-associated fibrosis.Serum ANGPTL8 and ANGPTL8+TyG index predicted MAFLD-associated fibrosis(AUC:0.812 and 0.835,respectively;both P<0.05).CONCLUSION The serum levels of ANGPTL8 are elevated and positively correlated with MAFLD.They can serve as predictors for the risk of MAFLD and liver fibrosis,with the ANGPTL8+TyG index potentially exhibiting even higher predictive value.展开更多
Objective Keshan disease(KD)is a myocardial mitochondrial disease closely related to insufficient selenium(Se)and protein intake.PTEN induced putative kinase 1(PINK1)/Parkin mediated mitochondrial autophagy regulates ...Objective Keshan disease(KD)is a myocardial mitochondrial disease closely related to insufficient selenium(Se)and protein intake.PTEN induced putative kinase 1(PINK1)/Parkin mediated mitochondrial autophagy regulates various physiological and pathological processes in the body.This study aimed to elucidate the relationship between PINK1/Parkin-regulated mitochondrial autophagy and KD-related myocardial injury.Methods A low Se and low protein animal model was established.One hundred Wistar rats were randomly divided into 5 groups(control group,low Se group,low protein group,low Se+low protein group,and corn from KD area group).The JC-1 method was used to detect the mitochondrial membrane potential(MMP).ELISA was used to detect serum creatine kinase MB(CK-MB),cardiac troponin I(cTnI),and mitochondrial-glutamicoxalacetic transaminase(M-GOT)levels.RT-PCR and Western blot analysis were used to detect the expression of PINK1,Parkin,sequestome 1(P62),and microtubule-associated proteins1A/1B light chain 3B(MAP1LC3B).Results The MMP was significantly decreased and the activity of CK-MB,cTnI,and M-GOT significantly increased in each experimental group(low Se group,low protein group,low Se+low protein group and corn from KD area group)compared with the control group(P<0.05 for all).The mRNA and protein expression levels of PINK1,Parkin and MAP1LC3B were profoundly increased,and those of P62 markedly decreased in the experimental groups compared with the control group(P<0.05 for all).Conclusion Low Se and low protein levels exacerbate myocardial damage in KD by affecting the PINK1/Parkin-mediated mitochondrial autophagy pathway.展开更多
Objective:To evaluate the diagnostic potential of cerebrospmal fluid (CSF) levels of β-amyloid protein (Aβ) as biochemical marker for senile dementia in clinical practice. Methods : Sensitive enzyme-linked immunosor...Objective:To evaluate the diagnostic potential of cerebrospmal fluid (CSF) levels of β-amyloid protein (Aβ) as biochemical marker for senile dementia in clinical practice. Methods : Sensitive enzyme-linked immunosorbent assay (ELISA) was performed in our lalxrratory to delect the CSF levels of Aβt-40, Aβ1-42 in 54 patients with Alzlteimer's disease (AD), and 30 normal controls (NC). Results: The cut off value of Aβ ratio and Aβ1-42 concentration in NC group provided 54. 51%, 90. 00% sensitivity and 81. 25%, 84. 38% specificity respectively in diagnosis of AD. Conclusion : AD group had a significant decreased level of Aβ1-42 and an increased level of Aβ ratio, compared with NC group.展开更多
Lactate,a byproduct of glycolysis,was thought to be a metabolic waste until the discovery of the Warburg effect.Lactate not only functions as a metabolic substrate to provide energy but can also function as a signalin...Lactate,a byproduct of glycolysis,was thought to be a metabolic waste until the discovery of the Warburg effect.Lactate not only functions as a metabolic substrate to provide energy but can also function as a signaling molecule to modulate cellular functions under pathophysiological conditions.The Astrocyte-Neuron Lactate Shuttle has cla rified that lactate plays a pivotal role in the central nervous system.Moreover,protein lactylation highlights the novel role of lactate in regulating transcription,cellular functions,and disease development.This review summarizes the recent advances in lactate metabolism and its role in neurodegenerative diseases,thus providing optimal pers pectives for future research.展开更多
Endoplasmic reticulum stress and mitochondrial dysfunction play important roles in Parkinson s disease,but the regulato ry mechanism remains elusive.Prohibitin-2(PHB2)is a newly discove red autophagy receptor in the m...Endoplasmic reticulum stress and mitochondrial dysfunction play important roles in Parkinson s disease,but the regulato ry mechanism remains elusive.Prohibitin-2(PHB2)is a newly discove red autophagy receptor in the mitochondrial inner membrane,and its role in Parkinson’s disease remains unclear.Protein kinase R(PKR)-like endoplasmic reticulum kinase(PERK)is a factor that regulates cell fate during endoplasmic reticulum stress.Parkin is regulated by PERK and is a target of the unfolded protein response.It is unclear whether PERK regulates PHB2-mediated mitophagy thro ugh Parkin.In this study,we established a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced mouse model of Parkinson’s disease.We used adeno-associated virus to knockdown PHB2 expression.Our res ults showed that loss of dopaminergic neurons and motor deficits were aggravated in the MPTP-induced mouse model of Parkinson’s disease.Ove rexpression of PHB2 inhibited these abnormalities.We also established a 1-methyl-4-phenylpyridine(MPP+)-induced SH-SY5Y cell model of Parkinson’s disease.We found that ove rexpression of Parkin increased co-localization of PHB2 and microtubule-associated protein 1 light chain 3,and promoted mitophagy.In addition,MPP+regulated Parkin involvement in PHB2-mediated mitophagy through phosphorylation of PERK.These findings suggest that PHB2 participates in the development of Parkinson’s disease by intera cting with endoplasmic reticulum stress and Parkin.展开更多
Non-alcoholic fatty liver disease(NAFLD)is associated with mutations in lipopolysaccharide-binding protein(LBP),but the underlying epigenetic mechanisms remain understudied.Herein,LBP^(-/-)rats with NAFLD were establi...Non-alcoholic fatty liver disease(NAFLD)is associated with mutations in lipopolysaccharide-binding protein(LBP),but the underlying epigenetic mechanisms remain understudied.Herein,LBP^(-/-)rats with NAFLD were established and used to conduct integrative targetingactive enhancer histone H3 lysine 27 acetylation(H3K27ac)chromatin immunoprecipitation coupled with high-throughput and transcriptomic sequencing analysis to explore the potential epigenetic pathomechanisms of active enhancers of NAFLD exacerbation upon LBP deficiency.Notably,LBP^(-/-)reduced the inflammatory response but markedly aggravated high-fat diet(HFD)-induced NAFLD in rats,with pronounced alterations in the histone acetylome and regulatory transcriptome.In total,1128 differential enhancer-target genes significantly enriched in cholesterol and fatty acid metabolism were identified between wild-type(WT)and LBP^(-/-)NAFLD rats.Based on integrative analysis,CCAAT/enhancer-binding proteinβ(C/EBPβ)was identified as a pivotal transcription factor(TF)and contributor to dysregulated histone acetylome H3K27ac,and the lipid metabolism gene SCD was identified as a downstream effector exacerbating NAFLD.This study not only broadens our understanding of the essential role of LBP in the pathogenesis of NAFLD from an epigenetics perspective but also identifies key TF C/EBPβand functional gene SCD as potential regulators and therapeutic targets.展开更多
The major pathological changes in Alzheimer's disease are beta amyloid deposits and cognitive impairment. Calycosin is a typical phy- toestrogen derived from radix astragali that binds to estrogen receptors to produc...The major pathological changes in Alzheimer's disease are beta amyloid deposits and cognitive impairment. Calycosin is a typical phy- toestrogen derived from radix astragali that binds to estrogen receptors to produce estrogen-like effects. Radix astragali Calycosin has been shown to relieve cognitive impairment induced by diabetes mellitus, suggesting calycosin may improve the cognitive function of Alzhei- mer's disease patients. The protein kinase C pathway is upstream of the mitogen-activated protein kinase pathway and exerts a neuropro- tective effect by regulating Alzheimer's disease-related beta amyloid degradation. We hypothesized that calycosin improves the cognitive function of a transgenic mouse model of Alzheimer's disease by activating the protein kinase C pathway. Various doses of calycosin (10, 20 and 40 mg/kg) were intraperitoneally injected into APP/PS1 transgenic mice that model Alzheimer's disease. Calycosin diminished hippocampal beta amyloid, Tau protein, interleukin-lbeta, tumor necrosis factor-alpha, acetylcholinesterase and malondialdehyde levels in a dose-dependent manner, and increased acetylcholine and glutathione activities. The administration of a protein kinase C inhibitor, cal- phostin C, abolished the neuroprotective effects of calycosin including improving cognitive ability, and anti-oxidative and anti-inflammato- ry effects. Our data demonstrated that calycosin mitigated oxidative stress and inflammatory responses in the hippocampus of Alzheimer's disease model mice by activating the protein kinase C pathway, and thereby improving cognitive function.展开更多
基金supported by the National Natural Science Foundation of China,No.82003965the Science and Technology Research Project of Sichuan Provincial Administration of Traditional Chinese Medicine,No.2024MS167(to LH)+2 种基金the Xinglin Scholar Program of Chengdu University of Traditional Chinese Medicine,No.QJRC2022033(to LH)the Improvement Plan for the'Xinglin Scholar'Scientific Research Talent Program at Chengdu University of Traditional Chinese Medicine,No.XKTD2023002(to LH)the 2023 National Project of the College Students'Innovation and Entrepreneurship Training Program at Chengdu University of Traditional Chinese Medicine,No.202310633028(to FD)。
文摘The interaction between the gut microbiota and cyclic adenosine monophosphate(cAMP)-protein kinase A(PKA)signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enhances communication along the gut–brain axis.The gut microbiota influences the cAMP-PKA signaling pathway through its metabolites,which activates the vagus nerve and modulates the immune and neuroendocrine systems.Conversely,alterations in the cAMP-PKA signaling pathway can affect the composition of the gut microbiota,creating a dynamic network of microbial-host interactions.This reciprocal regulation affects neurodevelopment,neurotransmitter control,and behavioral traits,thus playing a role in the modulation of neurological diseases.The coordinated activity of the gut microbiota and the cAMP-PKA signaling pathway regulates processes such as amyloid-β protein aggregation,mitochondrial dysfunction,abnormal energy metabolism,microglial activation,oxidative stress,and neurotransmitter release,which collectively influence the onset and progression of neurological diseases.This study explores the complex interplay between the gut microbiota and cAMP-PKA signaling pathway,along with its implications for potential therapeutic interventions in neurological diseases.Recent pharmacological research has shown that restoring the balance between gut flora and cAMP-PKA signaling pathway may improve outcomes in neurodegenerative diseases and emotional disorders.This can be achieved through various methods such as dietary modifications,probiotic supplements,Chinese herbal extracts,combinations of Chinese herbs,and innovative dosage forms.These findings suggest that regulating the gut microbiota and cAMP-PKA signaling pathway may provide valuable evidence for developing novel therapeutic approaches for neurodegenerative diseases.
基金supported by the National Institutes of Health,Nos.AA025919,AA025919-03S1,and AA025919-05S1(all to RAF).
文摘Hippocampal neuronal loss causes cognitive dysfunction in Alzheimer’s disease.Adult hippocampal neurogenesis is reduced in patients with Alzheimer’s disease.Exercise stimulates adult hippocampal neurogenesis in rodents and improves memory and slows cognitive decline in patients with Alzheimer’s disease.However,the molecular pathways for exercise-induced adult hippocampal neurogenesis and improved cognition in Alzheimer’s disease are poorly understood.Recently,regulator of G protein signaling 6(RGS6)was identified as the mediator of voluntary running-induced adult hippocampal neurogenesis in mice.Here,we generated novel RGS6fl/fl;APP_(SWE) mice and used retroviral approaches to examine the impact of RGS6 deletion from dentate gyrus neuronal progenitor cells on voluntary running-induced adult hippocampal neurogenesis and cognition in an amyloid-based Alzheimer’s disease mouse model.We found that voluntary running in APP_(SWE) mice restored their hippocampal cognitive impairments to that of control mice.This cognitive rescue was abolished by RGS6 deletion in dentate gyrus neuronal progenitor cells,which also abolished running-mediated increases in adult hippocampal neurogenesis.Adult hippocampal neurogenesis was reduced in sedentary APP_(SWE) mice versus control mice,with basal adult hippocampal neurogenesis reduced by RGS6 deletion in dentate gyrus neural precursor cells.RGS6 was expressed in neurons within the dentate gyrus of patients with Alzheimer’s disease with significant loss of these RGS6-expressing neurons.Thus,RGS6 mediated voluntary running-induced rescue of impaired cognition and adult hippocampal neurogenesis in APP_(SWE) mice,identifying RGS6 in dentate gyrus neural precursor cells as a possible therapeutic target in Alzheimer’s disease.
基金Supported by the National Research Foundation of Korea Grant Funded by the Korea Government,No.RS-2024-00440477the Korea Institute of Science and Technology Institutional Program,No.2E33111-24-042.
文摘BACKGROUND Mixed lineage kinase domain-like protein(MLKL)serves as a critical mediator in necroptosis,a form of regulated cell death linked to various liver diseases.This study aims to specifically investigate the role of MLKL’s adenosine triphosphate(ATP)-binding pocket in facilitating necroptosis-independent pathways that may contribute to liver disease progression.By focusing on this mechanism,we seek to identify potential therapeutic targets that can modulate MLKL activity,offering new strategies for the prevention and treatment of liver-related pathologies.AIM To investigate the possibility of using the ATP-binding pocket-associated,necro-ptosis-independent MLKL pathway as a target for liver diseases.METHODS Cell death following necroptosis stimuli was evaluated using cell proliferation assays,flow cytometry,and electron microscopy in various cells.The human liver organoid system was used to evaluate whether the MLKL ATP pocket-binding inhibitor could attenuate inflammation.Additionally,alcoholic and non-alcoholic fatty liver diseases animal models were used to determine whether MLKL ATP pocket inhibitors could attenuate liver injury.RESULTS While an MLKL ATP pocket-binding inhibitor did not prevent necroptosis-induced cell death in RAW 264.7 cells,it did reduce the necroptosis-led expression of CXCL2,ICAM,and VCAM.Notably,MLKL ATP pocket inhibitor diminishes the expression of CXCL2,ICAM,and VCAM by inhibiting the IκB kinase and nuclear factor kappa-B pathways without inducing necroptosis-induced cell death in two-dimensional cell culture as well as the human-derived liver organoid system.Although MLKL ATP-binding inhibitor was ineffective in non-alcoholic fatty liver disease animal models,MLKL ATP-binding inhibitor attenuated hepatic inflammation in the alcoholic liver disease model.CONCLUSION MLKL ATP pocket-binding inhibitor exerted anti-inflammatory effects through the necroptosis-independent MLKL pathway in an animal model of alcoholic liver disease.
文摘The impact of apolipoprotein E(ApoE)isoforms on sporadic Alzheimer's disease has long been studied;however,the influences of apolipoprotein E gene(APOE)on healthy and pathological human brains are not fully understood.ApoE exists as three common isoforms(ApoE2,ApoE3,and ApoE4),which differ in two amino acid residues.Traditionally,ApoE binds cholesterol and phospholipids and ApoE isoforms display diffe rent affinities for their receptors,lipids transport and distribution in the brain and periphery.The role of ApoE in the human depends on ApoE isoforms,brain regions,aging,and neural injury.APOE E4 is the strongest genetic risk factor for sporadic Alzheimer's disease,considering its role in influencing amyloid-beta metabolism.The exact mechanisms by which APOE gene variants may increase or decrease Alzheimer's disease risk are not fully understood,but APOE was also known to affect directly and indirectly tau-mediated neurodegeneration,lipids metabolism,neurovascular unit,and microglial function.Consistent with the biological function of ApoE,ApoE4 isoform significantly alte red signaling pathways associated with cholesterol homeostasis,transport,and myelination.Also,the rare protective APOE variants confirm that ApoE plays an important role in Alzheimer's disease pathogenesis.The objectives of the present mini-review were to describe classical and new roles of various ApoE isoforms in Alzheimer's disease pathophysiology beyond the deposition of amyloid-beta and to establish a functional link between APOE,brain function,and memory,from a molecular to a clinical level.APOE genotype also exerted a heterogeneous effect on clinical Alzheimer's disease phenotype and its outcomes.Not only in learning and memory but also in neuro psychiatric symptoms that occur in a premorbid condition.Cla rifying the relationships between Alzheimer's disease-related pathology with neuropsychiatric symptoms,particularly suicidal ideation in Alzheimer's disease patients,may be useful for elucidating also the underlying pathophysiological process and its prognosis.Also,the effects of anti-amyloid-beta drugs,recently approved for the treatment of Alzheimer's disease,could be influenced by the APOE genotype.
基金Supported by National Natural Science Foundation of China (General Program),No.32060182Qiannan Prefecture Science and Technology Plan Project in China,No.Qiannan Kehe She Zi[2022]No.1.
文摘Dementia is a group of diseases,including Alzheimer's disease(AD),vascular dementia,Lewy body dementia,frontotemporal dementia,Parkinson's disease dementia,metabolic dementia and toxic dementia.The treatment of dementia mainly includes symptomatic treatment by controlling the primary disease and accompanying symptoms,nutritional support therapy for repairing nerve cells,psychological auxiliary treatment,and treatment that improves cognitive function through drugs.Among them,drug therapy to improve cognitive function is important.This review focuses on introducing and commenting on some recent progress in exploring drugs to improve cognitive function,especially the new progress in drug treatment for AD.We mainly discuss the opportunities and challenges in finding and developing new therapeutic drugs from the aspects of acetylcholinesterase,N-methyl-D-aspartate glutamate receptor,amyloid protein,tau protein and chronic immune inflammation.
基金supported in part by Award 2121063 from National Science Foundation(to YM)AG66986 from the National Institutes of Health(to MSW).
文摘γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the Notch family of cell-surface receptors.Mutations inγ-secretase and amyloid precursor protein lead to early-onset familial Alzheimer’s disease.γ-Secretase has thus served as a critical drug target for treating familial Alzheimer’s disease and the more common late-onset Alzheimer’s disease as well.However,critical gaps remain in understanding the mechanisms of processive proteolysis of substrates,the effects of familial Alzheimer’s disease mutations,and allosteric modulation of substrate cleavage byγ-secretase.In this review,we focus on recent studies of structural dynamic mechanisms ofγ-secretase.Different mechanisms,including the“Fit-Stay-Trim,”“Sliding-Unwinding,”and“Tilting-Unwinding,”have been proposed for substrate proteolysis of amyloid precursor protein byγ-secretase based on all-atom molecular dynamics simulations.While an incorrect registry of the Notch1 substrate was identified in the cryo-electron microscopy structure of Notch1-boundγ-secretase,molecular dynamics simulations on a resolved model of Notch1-boundγ-secretase that was reconstructed using the amyloid precursor protein-boundγ-secretase as a template successfully capturedγ-secretase activation for proper cleavages of both wildtype and mutant Notch,being consistent with biochemical experimental findings.The approach could be potentially applied to decipher the processing mechanisms of various substrates byγ-secretase.In addition,controversy over the effects of familial Alzheimer’s disease mutations,particularly the issue of whether they stabilize or destabilizeγ-secretase-substrate complexes,is discussed.Finally,an outlook is provided for future studies ofγ-secretase,including pathways of substrate binding and product release,effects of modulators on familial Alzheimer’s disease mutations of theγ-secretase-substrate complexes.Comprehensive understanding of the functional mechanisms ofγ-secretase will greatly facilitate the rational design of effective drug molecules for treating familial Alzheimer’s disease and perhaps Alzheimer’s disease in general.
基金supported by Cure Alzheimer’s Fund (to RET and SHC)JPB Foundation (to RET),and R56AG072054 (to SHC)。
文摘Irisin is a myokine that is generated by cleavage of the membrane protein fibronectin type Ⅲ domain-containing protein 5(FNDC5) in response to physical exercise. Studies reveal that irisin/FNDC5 has neuroprotective functions against Alzheimer's disease, the most common form of dementia in the elderly, by improving cognitive function and reducing amyloid-β and tau pathologies as well as neuroinflammation in cell culture or animal models of Alzheimer's disease. Although current and ongoing studies on irisin/FNDC5 show promising results, further mechanistic studies are required to clarify its potential as a meaningful therapeutic target for alleviating Alzheimer's disease. We recently found that irisin treatment reduces amyloid-β pathology by increasing the activity/levels of amyloid-β-degrading enzyme neprilysin secreted from astrocytes. Herein, we present an overview of irisin/FNDC5's protective roles and mechanisms against Alzheimer's disease.
基金supported by the National Key R&D Program of China,No.2021YFF0702203(to HYL)the National Natural Science Foundation of China,No.82101323(to TS)Preferred Foundation of Zhejiang Postdoctors,No.ZJ2021152(to TS).
文摘Parkinson’s disease is a common neurodegenerative disorder that is associated with abnormal aggregation and accumulation of neurotoxic proteins,includingα-synuclein,amyloid-β,and tau,in addition to the impaired elimination of these neurotoxic protein.Atypical parkinsonism,which has the same clinical presentation and neuropathology as Parkinson’s disease,expands the disease landscape within the continuum of Parkinson’s disease and related disorders.The glymphatic system is a waste clearance system in the brain,which is responsible for eliminating the neurotoxic proteins from the interstitial fluid.Impairment of the glymphatic system has been proposed as a significant contributor to the development and progression of neurodegenerative disease,as it exacerbates the aggregation of neurotoxic proteins and deteriorates neuronal damage.Therefore,impairment of the glymphatic system could be considered as the final common pathway to neurodegeneration.Previous evidence has provided initial insights into the potential effect of the impaired glymphatic system on Parkinson’s disease and related disorders;however,many unanswered questions remain.This review aims to provide a comprehensive summary of the growing literature on the glymphatic system in Parkinson’s disease and related disorders.The focus of this review is on identifying the manifestations and mechanisms of interplay between the glymphatic system and neurotoxic proteins,including loss of polarization of aquaporin-4 in astrocytic endfeet,sleep and circadian rhythms,neuroinflammation,astrogliosis,and gliosis.This review further delves into the underlying pathophysiology of the glymphatic system in Parkinson’s disease and related disorders,and the potential implications of targeting the glymphatic system as a novel and promising therapeutic strategy.
基金financially supported by the Science and Technology Innovation Program of Hunan Province,No.2022RC1220(to WP)China Postdoctoral Science Foundation,No.2022M711733(to ZZ)+2 种基金the National Natural Science Foundation of China,No.82160920(to ZZ)Hebei Postdoctoral Scientific Research Project,No.B2022003040(to ZZ)Hunan Flagship Department of Integrated Traditional Chinese and Western Medicine(to WP)。
文摘Alzheimer's disease,the primary cause of dementia,is characterized by neuropathologies,such as amyloid plaques,synaptic and neuronal degeneration,and neurofibrillary tangles.Although amyloid plaques are the primary characteristic of Alzheimer's disease in the central nervous system and peripheral organs,targeting amyloid-beta clearance in the central nervous system has shown limited clinical efficacy in Alzheimer's disease treatment.Metabolic abnormalities are commonly observed in patients with Alzheimer's disease.The liver is the primary peripheral organ involved in amyloid-beta metabolism,playing a crucial role in the pathophysiology of Alzheimer's disease.Notably,impaired cholesterol metabolism in the liver may exacerbate the development of Alzheimer's disease.In this review,we explore the underlying causes of Alzheimer's disease and elucidate the role of the liver in amyloid-beta clearance and cholesterol metabolism.Furthermore,we propose that restoring normal cholesterol metabolism in the liver could represent a promising therapeutic strategy for addressing Alzheimer's disease.
基金supported by the National Key Research&Development Program of China,Nos.2021YFC2501205(to YC),2022YFC24069004(to JL)the STI2030-Major Project,Nos.2021ZD0201101(to YC),2022ZD0211800(to YH)+2 种基金the National Natural Science Foundation of China(Major International Joint Research Project),No.82020108013(to YH)the Sino-German Center for Research Promotion,No.M-0759(to YH)a grant from Beijing Municipal Science&Technology Commission(Beijing Brain Initiative),No.Z201100005520018(to JL)。
文摘Several promising plasma biomarker proteins,such as amyloid-β(Aβ),tau,neurofilament light chain,and glial fibrillary acidic protein,are widely used for the diagnosis of neurodegenerative diseases.However,little is known about the long-term stability of these biomarker proteins in plasma samples stored at-80°C.We aimed to explore how storage time would affect the diagnostic accuracy of these biomarkers using a large cohort.Plasma samples from 229 cognitively unimpaired individuals,encompassing healthy controls and those experiencing subjective cognitive decline,as well as 99 patients with cognitive impairment,comprising those with mild cognitive impairment and dementia,were acquired from the Sino Longitudinal Study on Cognitive Decline project.These samples were stored at-80°C for up to 6 years before being used in this study.Our results showed that plasma levels of Aβ42,Aβ40,neurofilament light chain,and glial fibrillary acidic protein were not significantly correlated with sample storage time.However,the level of total tau showed a negative correlation with sample storage time.Notably,in individuals without cognitive impairment,plasma levels of total protein and tau phosphorylated protein threonine 181(p-tau181)also showed a negative correlation with sample storage time.This was not observed in individuals with cognitive impairment.Consequently,we speculate that the diagnostic accuracy of plasma p-tau181 and the p-tau181 to total tau ratio may be influenced by sample storage time.Therefore,caution is advised when using these plasma biomarkers for the identification of neurodegenerative diseases,such as Alzheimer's disease.Furthermore,in cohort studies,it is important to consider the impact of storage time on the overall results.
基金supported by the National Natural Science Foundation of China,Nos.92049120 and 81870897STI2030-Major Projects,No.2021ZD0204001+6 种基金Guangdong Key Project for Development of New Tools for the Diagnosis and Treatment of Autism,No.2018B030335001the Natural Science Foundation of Jiangsu Province,No.BK20181436the National Major Scientific and Technological Special Project for Significant New Drug Development,No.2019ZX09301102the Discipline Construction Program of the Second Affiliated Hospital of Soochow University,No.XKTJ-TD202003Sino-German Cooperation Mobility Programme,No.M-0679the Science and Technology Project of Suzhou,No.SKY2022161Research Project of Neurological Diseases of the Second Affiliated Hospital of Soochow University Medical Center,No.ND2023A01(all to QHM)。
文摘The endoplasmic reticulum,a key cellular organelle,regulates a wide variety of cellular activities.Endoplasmic reticulum autophagy,one of the quality control systems of the endoplasmic reticulum,plays a pivotal role in maintaining endoplasmic reticulum homeostasis by controlling endoplasmic reticulum turnover,remodeling,and proteostasis.In this review,we briefly describe the endoplasmic reticulum quality control system,and subsequently focus on the role of endoplasmic reticulum autophagy,emphasizing the spatial and temporal mechanisms underlying the regulation of endoplasmic reticulum autophagy according to cellular requirements.We also summarize the evidence relating to how defective or abnormal endoplasmic reticulum autophagy contributes to the pathogenesis of neurodegenerative diseases.In summary,this review highlights the mechanisms associated with the regulation of endoplasmic reticulum autophagy and how they influence the pathophysiology of degenerative nerve disorders.This review would help researchers to understand the roles and regulatory mechanisms of endoplasmic reticulum-phagy in neurodegenerative disorders.
基金Joint Funds for the Innovation of Science and Technology,Fujian Province,No.2021Y9106Fujian Provincial Health Technology Project,No.2021GGA033the Natural Science Foundation of Fujian Province,No.2024J011234.
文摘BACKGROUND The NOD-like receptor thermal protein domain associated protein 3(NLRP3)inflammasome may play an important role in diabetic kidney disease(DKD).However,the exact link remains unclear.AIM To investigate the role of the NLRP3 inflammasome in DKD.METHODS Using datasets from the Gene Expression Omnibus database,30 NLRP3 inflammasome-related genes were identified.Differentially expressed genes were selected using differential expression analysis,whereas intersecting genes were selected based on overlapping differentially expressed genes and NLRP3 inflammasome-related genes.Subsequently,three machine learning algorithms were used to screen genes,and biomarkers were identified by overlapping the genes from the three algorithms.Potential biomarkers were validated by western blotting in a db/db mouse model of diabetes.RESULTS Two biomarkers,sirtuin 2(SIRT2)and caspase 1(CASP1),involved in the Leishmania infection pathway were identified.Both biomarkers were expressed in endothelial cells.Pseudo-temporal analysis based on endothelial cells showed that DKD mostly occurs during the mid-differentiation stage.Western blotting results showed that CASP1 expression was higher in the DKD group than in the control group(P<0.05),and SIRT2 content decreased(P<0.05).CONCLUSION SIRT2 and CASP1 provide a potential theoretical basis for DKD treatment.
基金Supported by the Kuwait Foundation for the Advancement of Sciences(KFAS)and Dasman Diabetes Institute,No.RACB-2021-007.
文摘In this editorial,we comment on the article by Liu et al published in the recent issue of the World Journal of Diabetes(Relationship between GCKR gene rs780094 polymorphism and type 2 diabetes with albuminuria).Type 2 diabetes mellitus(T2DM)is a chronic disorder characterized by dysregulated glucose homeostasis.The persistent elevated blood glucose level in T2DM significantly increases the risk of developing severe complications,including cardiovascular disease,re-tinopathy,neuropathy,and nephropathy.T2DM arises from a complex interplay between genetic,epigenetic,and environmental factors.Global genomic studies have identified numerous genetic variations associated with an increased risk of T2DM.Specifically,variations within the glucokinase regulatory protein(GCKR)gene have been linked to heightened susceptibility to T2DM and its associated complications.The clinical trial by Liu et al further elucidates the role of the GCKR rs780094 polymorphism in T2DM and nephropathy development.Their findings demonstrate that individuals carrying the CT or TT genotype at the GCKR rs780094 locus are at a higher risk of developing T2DM with albuminuria compared to those with the CC genotype.These findings highlight the importance of genetic testing and risk assessment in T2DM to develop effective preventive strategies and personalized treatment plans.
基金Supported by Youth Talents Project of Joint Fund of Hubei Health Commission,No.WJ2019H170and Xiaogan Natural Science Project,No.XGKJ2020010033。
文摘BACKGROUND The prevalence of metabolic dysfunction-associated fatty liver disease(MAFLD)is rapidly increasing,currently affecting approximately 25%of the global population.Liver fibrosis represents a crucial stage in the development of MAFLD,with advanced liver fibrosis elevating the risks of cirrhosis and hepatocellular carcinoma.Simple serum markers are less effective in diagnosing liver fibrosis compared to more complex markers.However,imaging techniques like transient elastography face limitations in clinical application due to equipment and technical constraints.Consequently,it is imperative to identify a straightforward yet effective method for assessing MAFLD-associated liver fibrosis.AIM To investigate the predictive value of angiopoietin-like protein 8(ANGPTL8)in MAFLD and its progression.METHODS We analyzed 160 patients who underwent abdominal ultrasonography in the Endocrinology Department,Xiaogan Central Hospital affiliated to Wuhan University of Science and Technology,during September 2021-July 2022.Using abdominal ultrasonography and MAFLD diagnostic criteria,among the 160 patients,80 patients(50%)were diagnosed with MAFLD.The MAFLD group was divided into the liver fibrosis group(n=23)and non-liver fibrosis group(n=57)by using a cut-off fibrosis-4 index≥1.45.Logistical regression was used to analyze the risk of MAFLD and the risk factors for its progression.Receiver operating characteristic curves were used to evaluate the predictive value of serum ANGPTL8 in MAFLD and its progression.RESULTS Compared with non-MAFLD patients,MAFLD patients had higher serum ANGPTL8 and triglyceride-glucose(TyG)index(both P<0.05).Serum ANGPTL8(r=0.576,P<0.001)and TyG index(r=0.473,P<0.001)were positively correlated with MAFLD.Serum ANGPTL8 was a risk factor for MAFLD[odds ratio(OR):1.123,95%confidence interval(CI):1.066-1.184,P<0.001).Serum ANGPTL8 and ANGPTL8+TyG index predicted MAFLD[area under the curve(AUC):0.832 and 0.886,respectively;both P<0.05].Compared with MAFLD patients without fibrosis,those with fibrosis had higher serum ANGPTL8 and TyG index(both P<0.05),and both parameters were positively correlated with MAFLD-associated fibrosis.Elevated serum ANGPTL8(OR:1.093,95%CI:1.044-1.144,P<0.001)and TyG index(OR:2.383,95%CI:1.199-4.736,P<0.013)were risk factors for MAFLD-associated fibrosis.Serum ANGPTL8 and ANGPTL8+TyG index predicted MAFLD-associated fibrosis(AUC:0.812 and 0.835,respectively;both P<0.05).CONCLUSION The serum levels of ANGPTL8 are elevated and positively correlated with MAFLD.They can serve as predictors for the risk of MAFLD and liver fibrosis,with the ANGPTL8+TyG index potentially exhibiting even higher predictive value.
基金supported by the Natural Science Foundation of Heilongjiang Province(No.LH2021H009).
文摘Objective Keshan disease(KD)is a myocardial mitochondrial disease closely related to insufficient selenium(Se)and protein intake.PTEN induced putative kinase 1(PINK1)/Parkin mediated mitochondrial autophagy regulates various physiological and pathological processes in the body.This study aimed to elucidate the relationship between PINK1/Parkin-regulated mitochondrial autophagy and KD-related myocardial injury.Methods A low Se and low protein animal model was established.One hundred Wistar rats were randomly divided into 5 groups(control group,low Se group,low protein group,low Se+low protein group,and corn from KD area group).The JC-1 method was used to detect the mitochondrial membrane potential(MMP).ELISA was used to detect serum creatine kinase MB(CK-MB),cardiac troponin I(cTnI),and mitochondrial-glutamicoxalacetic transaminase(M-GOT)levels.RT-PCR and Western blot analysis were used to detect the expression of PINK1,Parkin,sequestome 1(P62),and microtubule-associated proteins1A/1B light chain 3B(MAP1LC3B).Results The MMP was significantly decreased and the activity of CK-MB,cTnI,and M-GOT significantly increased in each experimental group(low Se group,low protein group,low Se+low protein group and corn from KD area group)compared with the control group(P<0.05 for all).The mRNA and protein expression levels of PINK1,Parkin and MAP1LC3B were profoundly increased,and those of P62 markedly decreased in the experimental groups compared with the control group(P<0.05 for all).Conclusion Low Se and low protein levels exacerbate myocardial damage in KD by affecting the PINK1/Parkin-mediated mitochondrial autophagy pathway.
基金Supported by Grant from National Ministry of Personnel Foundation for Distinguished Young Schotars of China(1998)
文摘Objective:To evaluate the diagnostic potential of cerebrospmal fluid (CSF) levels of β-amyloid protein (Aβ) as biochemical marker for senile dementia in clinical practice. Methods : Sensitive enzyme-linked immunosorbent assay (ELISA) was performed in our lalxrratory to delect the CSF levels of Aβt-40, Aβ1-42 in 54 patients with Alzlteimer's disease (AD), and 30 normal controls (NC). Results: The cut off value of Aβ ratio and Aβ1-42 concentration in NC group provided 54. 51%, 90. 00% sensitivity and 81. 25%, 84. 38% specificity respectively in diagnosis of AD. Conclusion : AD group had a significant decreased level of Aβ1-42 and an increased level of Aβ ratio, compared with NC group.
基金supported by the National Natural Science Foundation of China,Nos.82230042 and 81930029(to ZY),U2004201(to FG and RYP)the China Postdoctoral Science Foundation,No.2020M683748(to RYP)。
文摘Lactate,a byproduct of glycolysis,was thought to be a metabolic waste until the discovery of the Warburg effect.Lactate not only functions as a metabolic substrate to provide energy but can also function as a signaling molecule to modulate cellular functions under pathophysiological conditions.The Astrocyte-Neuron Lactate Shuttle has cla rified that lactate plays a pivotal role in the central nervous system.Moreover,protein lactylation highlights the novel role of lactate in regulating transcription,cellular functions,and disease development.This review summarizes the recent advances in lactate metabolism and its role in neurodegenerative diseases,thus providing optimal pers pectives for future research.
基金supported by the Key Science and Technology Research of Henan Province,No.222102310351(to JW)Luoyang 2022 Medical and Health Guiding Science and Technology Plan Project,No.2022057Y(to JY)Henan Medical Science and Technology Research Program Province-Ministry Co-sponsorship,No.SBGJ202002099(to JY)。
文摘Endoplasmic reticulum stress and mitochondrial dysfunction play important roles in Parkinson s disease,but the regulato ry mechanism remains elusive.Prohibitin-2(PHB2)is a newly discove red autophagy receptor in the mitochondrial inner membrane,and its role in Parkinson’s disease remains unclear.Protein kinase R(PKR)-like endoplasmic reticulum kinase(PERK)is a factor that regulates cell fate during endoplasmic reticulum stress.Parkin is regulated by PERK and is a target of the unfolded protein response.It is unclear whether PERK regulates PHB2-mediated mitophagy thro ugh Parkin.In this study,we established a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced mouse model of Parkinson’s disease.We used adeno-associated virus to knockdown PHB2 expression.Our res ults showed that loss of dopaminergic neurons and motor deficits were aggravated in the MPTP-induced mouse model of Parkinson’s disease.Ove rexpression of PHB2 inhibited these abnormalities.We also established a 1-methyl-4-phenylpyridine(MPP+)-induced SH-SY5Y cell model of Parkinson’s disease.We found that ove rexpression of Parkin increased co-localization of PHB2 and microtubule-associated protein 1 light chain 3,and promoted mitophagy.In addition,MPP+regulated Parkin involvement in PHB2-mediated mitophagy through phosphorylation of PERK.These findings suggest that PHB2 participates in the development of Parkinson’s disease by intera cting with endoplasmic reticulum stress and Parkin.
基金supported by the National Natural Science Foundation of China(81971875,82300661)Natural Science Foundation of Anhui province(2308085QH246)+3 种基金Natural Science Foundation of the Anhui Higher Education Institutions(KJ2021A0205)Basic and Clinical Cooperative Research Program of Anhui Medical University(2019xkjT002,2019xkjT022,2022xkjT013)Talent Training Program,School of Basic Medical Sciences,Anhui Medical University(2022YPJH102)National College Students Innovation and Entrepreneurship Training Program of China(202210366024)。
文摘Non-alcoholic fatty liver disease(NAFLD)is associated with mutations in lipopolysaccharide-binding protein(LBP),but the underlying epigenetic mechanisms remain understudied.Herein,LBP^(-/-)rats with NAFLD were established and used to conduct integrative targetingactive enhancer histone H3 lysine 27 acetylation(H3K27ac)chromatin immunoprecipitation coupled with high-throughput and transcriptomic sequencing analysis to explore the potential epigenetic pathomechanisms of active enhancers of NAFLD exacerbation upon LBP deficiency.Notably,LBP^(-/-)reduced the inflammatory response but markedly aggravated high-fat diet(HFD)-induced NAFLD in rats,with pronounced alterations in the histone acetylome and regulatory transcriptome.In total,1128 differential enhancer-target genes significantly enriched in cholesterol and fatty acid metabolism were identified between wild-type(WT)and LBP^(-/-)NAFLD rats.Based on integrative analysis,CCAAT/enhancer-binding proteinβ(C/EBPβ)was identified as a pivotal transcription factor(TF)and contributor to dysregulated histone acetylome H3K27ac,and the lipid metabolism gene SCD was identified as a downstream effector exacerbating NAFLD.This study not only broadens our understanding of the essential role of LBP in the pathogenesis of NAFLD from an epigenetics perspective but also identifies key TF C/EBPβand functional gene SCD as potential regulators and therapeutic targets.
基金supported by the a grant from China Postdoctoral Science Project,No.801161020425the Natural Science Foundation of China,No.8160010172
文摘The major pathological changes in Alzheimer's disease are beta amyloid deposits and cognitive impairment. Calycosin is a typical phy- toestrogen derived from radix astragali that binds to estrogen receptors to produce estrogen-like effects. Radix astragali Calycosin has been shown to relieve cognitive impairment induced by diabetes mellitus, suggesting calycosin may improve the cognitive function of Alzhei- mer's disease patients. The protein kinase C pathway is upstream of the mitogen-activated protein kinase pathway and exerts a neuropro- tective effect by regulating Alzheimer's disease-related beta amyloid degradation. We hypothesized that calycosin improves the cognitive function of a transgenic mouse model of Alzheimer's disease by activating the protein kinase C pathway. Various doses of calycosin (10, 20 and 40 mg/kg) were intraperitoneally injected into APP/PS1 transgenic mice that model Alzheimer's disease. Calycosin diminished hippocampal beta amyloid, Tau protein, interleukin-lbeta, tumor necrosis factor-alpha, acetylcholinesterase and malondialdehyde levels in a dose-dependent manner, and increased acetylcholine and glutathione activities. The administration of a protein kinase C inhibitor, cal- phostin C, abolished the neuroprotective effects of calycosin including improving cognitive ability, and anti-oxidative and anti-inflammato- ry effects. Our data demonstrated that calycosin mitigated oxidative stress and inflammatory responses in the hippocampus of Alzheimer's disease model mice by activating the protein kinase C pathway, and thereby improving cognitive function.