期刊文献+
共找到820篇文章
< 1 2 41 >
每页显示 20 50 100
Meta-QTL analysis for mining of candidate genes and constitutive gene network development for fungal disease resistance in maize(Zea mays L.)
1
作者 Mamta Gupta Mukesh Choudhary +3 位作者 Alla Singh Seema Sheoran Deepak Singla Sujay Rakshit 《The Crop Journal》 SCIE CSCD 2023年第2期511-522,共12页
The development of resistant maize cultivars is the most effective and sustainable approach to combat fungal diseases.Over the last three decades,many quantitative trait loci(QTL)mapping studies reported numerous QTL ... The development of resistant maize cultivars is the most effective and sustainable approach to combat fungal diseases.Over the last three decades,many quantitative trait loci(QTL)mapping studies reported numerous QTL for fungal disease resistance(FDR)in maize.However,different genetic backgrounds of germplasm and differing QTL analysis algorithms limit the use of identified QTL for comparative studies.The meta-QTL(MQTL)analysis is the meta-analysis of multiple QTL experiments,which entails broader allelic coverage and helps in the combined analysis of diverse QTL mapping studies revealing common genomic regions for target traits.In the present study,128(33.59%)out of 381 reported QTL(from 82 studies)for FDR could be projected on the maize genome through MQTL analysis.It revealed 38 MQTL for FDR(12 diseases)on all chromosomes except chromosome 10.Five MQTL namely 1_4,2_4,3_2,3_4,and 5_4 were linked with multiple FDR.Total of 1910 candidate genes were identified for all the MQTL regions,with protein kinase gene families,TFs,pathogenesis-related,and disease-responsive proteins directly or indirectly associated with FDR.The comparison of physical positions of marker-traits association(MTAs)from genome-wide association studies with genes underlying MQTL interval verified the presence of QTL/candidate genes for particular diseases.The linked markers to MQTL and putative candidate genes underlying identified MQTL can be further validated in the germplasm through marker screening and expression studies.The study also attempted to unravel the underlying mechanism for FDR resistance by analyzing the constitutive gene network,which will be a useful resource to understand the molecular mechanism of defense-response of a particular disease and multiple FDR in maize. 展开更多
关键词 Meta-qtl Maize genome Fungal disease resistance Candidate gene Constitutive genes gene network
下载PDF
Identification and expression analysis of sugar transporter family genes reveal the role of ZmSTP2 and ZmSTP20 in maize disease resistance
2
作者 MA Yu-xin ZHOU Zhi-jun +6 位作者 CAO Hong-zhe ZHOU Fan SI He-long ZANG Jin-ping XING Ji-hong ZHANG Kang DONG Jin-gao 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第11期3458-3473,共16页
Sugar is an indispensable source of energy for plant growth and development, and it requires the participation of sugar transporter proteins(STPs) for crossing the hydrophobic barrier in plants. Here, we systematicall... Sugar is an indispensable source of energy for plant growth and development, and it requires the participation of sugar transporter proteins(STPs) for crossing the hydrophobic barrier in plants. Here, we systematically identified the genes encoding sugar transporters in the genome of maize(Zea mays L.), analyzed their expression patterns under different conditions, and determined their functions in disease resistance. The results showed that the mazie sugar transporter family contained 24 members, all of which were predicted to be distributed on the cell membrane and had a highly conserved transmembrane transport domain. The tissue-specific expression of the maize sugar transporter genes was analyzed, and the expression level of these genes was found to be significantly different in different tissues. The analysis of biotic and abiotic stress data showed that the expression levels of the sugar transporter genes changed significantly under different stress factors. The expression levels of Zm STP2 and Zm STP20 continued to increase following Fusarium graminearum infection. By performing disease resistance analysis of zmstp2 and zmstp20 mutants, we found that after inoculation with Cochliobolus carbonum, Setosphaeria turcica, Cochliobolus heterostrophus, and F. graminearum, the lesion area of the mutants was significantly higher than that of the wild-type B73 plant. In this study, the genes encoding sugar transporters in maize were systematically identified and analyzed at the whole genome level. The expression patterns of the sugar transporter-encoding genes in different tissues of maize and under biotic and abiotic stresses were revealed, which laid an important theoretical foundation for further elucidation of their functions. 展开更多
关键词 MAIZE sugar transporter gene expression disease resistance
下载PDF
An Integrated QTL Map of Fungal Disease Resistance in Soybean (Glycine max L. Merr):A Method of Meta-Analysis for Mining R Genes 被引量:5
3
作者 WANG Jia-lin LIU Chun-yan +4 位作者 WANG Jing QI Zhao-ming LI Hui HU Guo-hua CHEN Qing-shan 《Agricultural Sciences in China》 CAS CSCD 2010年第2期223-232,共10页
Diseases caused by fungal pathogens account for approximately 50% of all soybean disease losses around the world. Conflicting results of fungal disease resistance QTLs from different populations often occurred. The ob... Diseases caused by fungal pathogens account for approximately 50% of all soybean disease losses around the world. Conflicting results of fungal disease resistance QTLs from different populations often occurred. The objectives of this study were to: (i) evaluate evidence for reported fungal disease resistance QTLs associations in soybean and (ii) extract relatively reliable and useful information from the "real" QTLs and mine putative genes in soybean. An integrated map of fungal disease resistance QTLs in soybean was established with soymap 2 published in 2004 as a reference map. QTLs of fungal disease resistance developed from each of separate populations in recent 10 years were integrated into a combinative map for gene cloning and marker assisted selection in soybean. 107 QTLs from different maps were integrated and projected to the reference map with the software BioMercator 2.1. A method of meta-analysis was used to narrow down the confidence interval, and 23 "real" QTLs and their corresponding markers were obtained from 12 linkage groups (LG), respectively. Two published R genes were found in these "real" QTLs intervals. Sequences in the "real" QTLs intervals were predicted by GENSCAN, and these predicted genes were annotated in Goblet. 228 resistance gene analogs (RGAs) in 12 different terms were mined. The results will lay the foundation for a bioinformatics platform combining abundant QTLs, and offer the basis for marker assisted selection and gene cloning in soybean. 展开更多
关键词 SOYBEAN fungal disease qtl META-ANALYSIS resistance gene analogs
下载PDF
Recent Progress in Elucidating the Structure, Function and Evolution of Disease Resistance Genes in Plants 被引量:28
4
作者 刘金灵 刘雄伦 +1 位作者 戴良英 王国梁 《Journal of Genetics and Genomics》 SCIE CAS CSCD 北大核心 2007年第9期765-776,共12页
Plants employ multifaceted mechanisms to fight with numerous pathogens in nature. Resistance (R) genes are the most effective weapons against pathogen invasion since they can specifically recognize the corresponding... Plants employ multifaceted mechanisms to fight with numerous pathogens in nature. Resistance (R) genes are the most effective weapons against pathogen invasion since they can specifically recognize the corresponding pathogen effectors or associated protein(s) to activate plant immune responses at the site of infection. Up to date, over 70 R genes have been isolated from various plant species. Most R proteins contain conserved motifs such as nucleotide-binding site (NBS), leucine-rich repeat (LRR), Toll-interleukin-1 receptor domain (TIR, homologous to cytoplasmic domains of the Drosophila Toll protein and the manamalian intefleukin-1 receptor), coiled-coil (CC) or leucine zipper (LZ) structure and protein kinase domain (PK). Recent results indicate that these domains play significant roles in R protein interactions with effector proteins from pathogens and in activating signal transduction pathways involved in innate immunity. This review highlights an overview of the recent progress in elucidating the structure, function and evolution of the isolated R genes in different plant-pathogen interaction systems. 展开更多
关键词 plant disease resistance gene defense signaling evolution of resistance gene cluster
下载PDF
Pyramiding the disease resistant genes to southern rust and stalk rot in maize(Zea mays L.) with marker-assisted selection
5
作者 LI Wei-hua1,WU Suo-wei1,ZHAO Feng1,YE Chun-jiang1,ZHOU Chun-jiang1,YANG Dian-er1,JIN De-min1,CHEN Shao-jiang2,WANG Shou-cai2,WANG Bin1(1.Institute of Genetics and Developmental Biology,Chinese Academy of Sciences,Beijing 100101 2. China Agricultural University,Beijing 100094) 《湖南农业大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第S1期216-,共1页
Southern corn rust(SCR) caused by Puccinia polysora Underw and maize stalk rot caused by Pythium inflatum Matthews(MSR-2) are two destructive diseases of maize(Zea mays L.) in China.Our previous studies indicated that... Southern corn rust(SCR) caused by Puccinia polysora Underw and maize stalk rot caused by Pythium inflatum Matthews(MSR-2) are two destructive diseases of maize(Zea mays L.) in China.Our previous studies indicated that maize inbred line Qi319 is highly resistant to SCR but susceptible to MSR-2,while inbred line 1145 is highly resistant to MSR-2 but susceptible to SCR.The SCR resistant gene(RppQ) in Qi319 and MSR-2 resistant gene(Rpi1) in 1145 have been mapped on chromosome 10 and 4 respectively.In this research,through marker-assisted selection(MAS) with the molecular markers,bnlg1937 tightly linked to Rpi1 and phi041 tightly linked to RppQ,pyramid breeding of the two kinds of disease resistant genes were carried out from the year of 2003 to 2007.Two homozygotic inbred lines of F5 generation,DR94-1-1-1 and DR36-1-1-1 were identified.MAS result suggested DR94-1-1-1 and DR36-1-1-1 contained the two resistance genes RppQ and Rpi1.Field inoculation tests confirmed their high resistance to the two diseases.In addition,field investigation indicated that the two selected inbred lines,particularly DR94-1-1-1,had excellent agronomic traits such as plant height,ear height and yield-relating traits including ear length,ear diameter,ear weight,kernels per ear,kernels per row and kernel weight per ear.The two selected inbred lines DR94-1-1-1 and DR36-1-1-1 can either be directly developed into commercial variety or used as immediate donors of SCR and MSR resistance breeding programs in maize. 展开更多
关键词 MSR with marker-assisted selection SCR DR Zea mays L Pyramiding the disease resistant genes to southern rust and stalk rot in maize
下载PDF
Molecular and Physical Mapping of Powdery Mildew Resistance Genes and QTLs in Wheat: A Review 被引量:7
6
作者 Jun GUO Cheng LIU +8 位作者 Shengnan ZHAI Haosheng LI Aifeng LIU Dungong CHENG Ran HAN Jianjun LIU Lingrang KONG Zhendong ZHAO Jianmin SONG 《Agricultural Science & Technology》 CAS 2017年第6期965-970,共6页
Wheat powdery mildew (Pro) is a major disease of wheat worldwide. During the past years, numerous studies have been published on molecular mapping of Pm resistance gene(s) in wheat. We summarized the relevant find... Wheat powdery mildew (Pro) is a major disease of wheat worldwide. During the past years, numerous studies have been published on molecular mapping of Pm resistance gene(s) in wheat. We summarized the relevant findings of 89 major re- sistance gene mapping studies and 25 quantitative trait loci (QTL) mapping studies. Major Pm resistance genes and QTLs were found on all wheat chromosomes, but the Pm resistance genes/QTLs were not randomly distributed on each chromosome of wheat. The summarized data showed that the A or B genome has more major Pm resistance genes than the D genome and chromosomes 1A, 2A, 2B, 5B, 5D, 6B, 7A and 7B harbor more major Pm resistance genes than the other chromosomes. For adult plant resistance (APR) genes/QTLs, B genome of wheat harbors more APR genes than A and D genomes, and chromo- somes 2A, 4A, 5A, 1B, 2B, 3B, 5B, 6B, 7B, 2D, 5D and 7D harbor more Pm resistance QTLs than the other chromosomes, suggesting that A genome except 1A, 3A and 6A, B genome except 4B, D genome except 1D, 3D, 4D, and 6D play an impor- tant role in wheat combating against powdery mildew. Furthermore, Pm resistance genes are derived from wheat and its rela- tives, which suggested that the resistance sources are diverse and Pm resistance genes are diverse and useful in combating against the powdery mildew isolates. In this review, four APR genes, Pm38/Lr34/Yr18/Sr57, Pm46/Lr67/Yr46/Sr55, Pm?/Lr27/Yr30/ SY2 and Pm39/Lr46/Yr29, are not only resistant to powdery mildew but also effective for rust diseases in the field, indicating that such genes are stable and useful in wheat breeding programmes. The summarized data also provide chromosome locations or linked markers for Pm resistance genes/QTLs. Markers linked to these genes can also be utilized to pyramid diverse Pm resis- tance genes/QTLs more efficiently by marker-assisted selection. 展开更多
关键词 Wheat powdery mildew Molecular mapping Major Pm resistance genes Quantitative trait loci qtl Marker-assisted selection
下载PDF
Bioinformatics Analysis of Disease Resistance Gene PR1 and Its Genetic Transformation in Soybeans and Cultivation of Multi-resistant Materials 被引量:1
7
作者 Huimin Cui Shuo Qu +2 位作者 Abraham Lamboro Yaolei Jiao Piwu Wang 《Phyton-International Journal of Experimental Botany》 SCIE 2022年第7期1445-1464,共20页
In agricultural production,a single insect-resistant and disease-resistant variety can no longer meet the demand.In this study,the expression vector pCAMBIA-3301-PR1 containing the disease-resistant gene PR1 was const... In agricultural production,a single insect-resistant and disease-resistant variety can no longer meet the demand.In this study,the expression vector pCAMBIA-3301-PR1 containing the disease-resistant gene PR1 was constructed by means of genetic engineering,and the PR1 gene was genetically transformed to contain the PR1 gene through the pollen tube method.In CryAb-8Like transgenic high-generation T7 receptor soybean,a new material that is resistant to insects and diseases is obtained.For T2 transformed plants,routine PCR detection,Southern Blot hybridization,fluorescence quantitative PCR detection,indoor and outdoor pest resistance identification and indoor disease resistance identification were performed.The results showed that there were 9 positive plants in the routine PCR test of T2 generation.In Southern Blot hybridization,both PR1 and CryAb-8Like genes are integrated in soybeans in the form of single copies.Fluorescence quantitative PCR showed that the expression levels of PR1 and CryAb-8Like genes are different in different tissues.The average expression levels of PR1 gene in plant roots,stems,and leaves are 2.88,1.54,and 5.26,respectively.CryAb-8Like genes are found in roots,stems,and leaves.The average expression levels were 1.36,1.39,and 4.25,respectively.The insectivorous rate of the CryAb-8Like gene in outdoor plants with positive insect resistance identification was 3.78%.The disc partition method was used indoors for pest resistance identification,and the bud length of transformed plants increased significantly.The average mortality rate of untransformed plants in indoor disease resistance identification was as high as 56.66%,and the average mortality rate of plants transformed with PR1 gene was 10.00%,and disease resistance was significantly improved.Therefore,a new material with resistance to diseases and insects is obtained. 展开更多
关键词 Soybean PR1 gene CryAb-8Like gene insect resistance disease resistance
下载PDF
Cloning and Analysis of a Disease Resistance Gene Homolog from Soybean 被引量:3
8
作者 王邦俊 张志刚 +4 位作者 李学刚 王永军 贺超英 张劲松 陈受宜 《Acta Botanica Sinica》 CSCD 2003年第7期864-870,共7页
Conserved domains e.g. nucleotide binding site (NBS) were found in several cloned plant disease resistance genes. Based on the NBS domain, resistance gene analogs (RGAs) have been isolated previously and were used as ... Conserved domains e.g. nucleotide binding site (NBS) were found in several cloned plant disease resistance genes. Based on the NBS domain, resistance gene analogs (RGAs) have been isolated previously and were used as probes to screen a soybean (Glycine max L. Merr.) cDNA library. A full-length cDNA, KR3, was obtained by screening the library and rapid amplification of cDNA ends (RACE) method. Sequence analysis revealed that the cDNA is 2 353 bp in length and the open reading frame (ORF) codes for a polypeptide of 636 amino acids with a Toll-Interleukin-1 receptor (TIR) and a NBS domain. Sequence alignment showed that it was similar to N gene of tobacco. The phylogenetic tree analysis of R proteins with NBS from higher plants was performed. The KR3 gene has low copies in soybean genome and its expression was induced by exogenous salicylic acid (SA). 展开更多
关键词 disease resistance gene homolog nucleotide binding site Toll-Interleukin-1 receptor SOYBEAN
下载PDF
Transgenic Cotton and Disease Resistance Genes
9
作者 RAJASEKARAN Kanniah 《棉花学报》 CSCD 北大核心 2008年第S1期43-,共1页
Success in conventional breeding for resistance to mycotoxin-producing or other phytopathogenic fungi is dependent on the availability of resistance gene(s) in the germplasm.Even when it is available,breeding for dise... Success in conventional breeding for resistance to mycotoxin-producing or other phytopathogenic fungi is dependent on the availability of resistance gene(s) in the germplasm.Even when it is available,breeding for disease-resistant crops is very time consuming,especially in perennial crops such 展开更多
关键词 Transgenic Cotton and disease resistance genes
下载PDF
Identification and Evaluation of Insect and Disease Resistance in Transgenic Cry1Ab13-1 and NPR1 Maize
10
作者 Yongjing Xi Zhou Yang +4 位作者 Yukun Jin Jing Qu Shuyan Guan Siyan Liu Piwu Wang 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第4期1257-1274,共18页
PCR detection,quantitative real-time PCR(q-RTPCR),outdoor insect resistance,and disease resistance identification were carried out for the detection of genetic stability and disease resistance through generations(T2,T... PCR detection,quantitative real-time PCR(q-RTPCR),outdoor insect resistance,and disease resistance identification were carried out for the detection of genetic stability and disease resistance through generations(T2,T3,and T4)in transgenic maize germplasms(S3002 and 349)containing the bivalent genes(insect resistance gene Cry1Ab13-1 and disease resistance gene NPR1)and their corresponding wild type.Results indicated that the target genes Cry1Ab13-1 and NPR1 were successfully transferred into both germplasms through tested generations;q-PCR confirmed the expression of Cry1Ab13-1 and NPR1 genes in roots,stems,and leaves of tested maize plants.In addition,S3002 and 349 bivalent gene-transformed lines exhibited resistance to large leaf spots and corn borer in the field evaluation compared to the wild type.Our study confirmed that Cry1Ab13-1 and NPR1 bivalent genes enhanced the resistance against maize borer and large leaf spot disease and can stably inherit.These findings could be exploited for improving other cultivated maize varieties. 展开更多
关键词 MAIZE NPR1 gene Cry1Ab13-1 gene disease resistance insect resistance
下载PDF
Transferring Translucent Endosperm Mutant Gene Wx-mq and Rice Stripe Disease Resistance Gene Stv-bi by Marker-Assisted Selection in Rice (Oryza sativa) 被引量:4
11
作者 YAO Shu CHEN Tao +5 位作者 ZHANG Ya-dong ZHU Zhen ZHAO Ling ZHAO Qing-yong ZHOU Li-hui WANG Cai-lin 《Rice science》 SCIE 2011年第2期102-109,共8页
A high-yielding japonica rice variety, Wuyunjing 7, bred in Jiangsu Province, China as a female parent was crossed with a Japanese rice variety Kantou 194, which carries a rice stripe disease resistance gene Stv-b' a... A high-yielding japonica rice variety, Wuyunjing 7, bred in Jiangsu Province, China as a female parent was crossed with a Japanese rice variety Kantou 194, which carries a rice stripe disease resistance gene Stv-b' and a translucent endosperm mutant gene Wx-mq. From F2 generations, a sequence characterized amplified region (SCAR) marker tightly linked with Stv-b' and a cleaved amplified polymorphic sequence (CAPS) marker for Wx-mq were used for marker-assisted selection. Finally, a new japonica rice line, Ning 9108, with excellent agronomic traits was obtained by multi-generational selection on stripe disease resistance and endosperm appearance. The utilization of the markers from genes related to rice quality and disease resistance was helpful not only for establishing a marker-assisted selection system of high-quality and disease resistance for rice but also for providing important intermediate materials and rapid selection method for good quality, disease resistance and high yield in rice breeding. 展开更多
关键词 RICE translucent endosperm mutant gene rice stripe disease resistance gene marker-assisted selection
下载PDF
Breeding of Selectable Marker-Free Transgenic Rice Lines Containing AP1 Gene with Enhanced Disease Resistance 被引量:3
12
作者 YU Heng-xiu LIU Qiao-quan +6 位作者 WANG Ling ZHAO Zhi-peng XU Li HUANG Ben-li GONG Zhi-yun TANG Shu-zhu GU Ming-hong 《Agricultural Sciences in China》 CAS CSCD 2006年第11期805-811,共7页
In order to obtain marker-free transgenic rice with improved disease resistance, the AP1 gene of Capsicum annuum and hygromycin-resistance gene (HPT) were cloned into the two separate T-DNA regions of the binary vec... In order to obtain marker-free transgenic rice with improved disease resistance, the AP1 gene of Capsicum annuum and hygromycin-resistance gene (HPT) were cloned into the two separate T-DNA regions of the binary vector pSB130, respectively, and introduced into the calli derived from the immature seeds of two elite japonica rice varieties, Guangling Xiangjing and Wuxiangjing 9, mediated by Agrobacterium-mediated transformation. Many cotransgenic rice lines containing both the AP1 gene and the marker gene were regenerated and the integration of both transgenes in the transgenic rice plants was confirmed by either PCR or Southern blotting technique. Several selectable marker-free transgenic rice plants were subsequently obtained from the progeny of the cotransformants, and confirmed by both PCR and Southern blotting analysis. These transgenic rice lines were tested in the field and their resistance to disease was carefully investigated, the results showed that after inoculation the resistance to either bacterial blight or sheath blight of the selected transgenic lines was improved when compared with those of wild type. 展开更多
关键词 rice (Oryza sativa L.) disease resistance AP1 gene selectable marker-free bacterial blight sheath blight
下载PDF
Molecular Detection and Disease Resistance Identification of Transgenic Wheat with pti5-vp16 Gene
13
作者 WEISong-hong CAOYuan-yin +3 位作者 ZHANG-Yan-zhen ZHANGLing-bing WANGGang YANGJia-shu 《Agricultural Sciences in China》 CAS CSCD 2003年第9期982-986,共5页
The immature embryos of wheat cultivars Liaochun10, Tiechun1 and Fengqiang3 were bombarded with gold particles coated with pti5 vp16 by gene gun and disease resistant regenerated plants were attained. In order to... The immature embryos of wheat cultivars Liaochun10, Tiechun1 and Fengqiang3 were bombarded with gold particles coated with pti5 vp16 by gene gun and disease resistant regenerated plants were attained. In order to confirm that the plants are genuine transformed ones, a series of molecular tests were conducted as follows. Firstly, transient GUS expression test on embryos two days after bombardment was done. There were many obvious blue spots produced on the surface of bombarded embryos after GUS staining, in which the maximum reached to 85 blue spots per embryo. Secondly, PCR test was performed with DNA from the regenerated plants obtained after double selection with ppt. 6 plants were found PCR test positive. At last, further verification analysis using dot hybridization and southern blotting was carried out on those PCR positive plants and the strong hybridization signals appeared as expected. All the above tests were uniformly indicated that the disease resistant regenerated plants were true transgenic plants. When inoculated with Blumeria graminis, transgenic wheat plants of PCR positive results were mostly resistant(R) after 7 days, and resis tant, moderate resistant(MR), moderate susceptible(MS) at 14 days respectively. The disease severity of them was distinctively lighter than that of control. 展开更多
关键词 Transgenic wheat pti5 vp16 gene Molecular detection disease resistance
下载PDF
Cloning and Sequence Analysis of Disease Resistance Gene Analogues from Three Wild Rice Species in Yunnan 被引量:1
14
作者 LIUJ-i-mei YANGMing-zhi 《Agricultural Sciences in China》 CAS CSCD 2003年第3期265-272,共8页
Two sets of degenerate oligonucleotide primers were designed according to amino acid conserved regions of reported plant disease resistance genes which encode proteins that contain nucleotide-binding site and leucine-... Two sets of degenerate oligonucleotide primers were designed according to amino acid conserved regions of reported plant disease resistance genes which encode proteins that contain nucleotide-binding site and leucine-rich repeats(NBS-LRR), and the plant disease resistance genes which encode serine/threonine protein kinase(STK). By polymerase chain reaction(PCR), disease resistance gene analogues have been amplified from three wild rice species in Yunnan Province, China. The DIN A fragments from amplification have been cloned into the pGEM-T vector respectively. Sequencing of the DNA fragments indicated that 7 classes, 2 classes and 6 classes NBS-LRR disease resistance gene analogues from Oryza rufipogon Griff. , Oryza officinalis Wall. , and Oryza meyeriana Baill. were obtained respectively. The two representative fragments of TO12 from Oryza officinalis Wall, and TR19 from Oryza rufipogon Griff, belong to the same class and homology of their sequences are 100%. The result shows that the sequences of the same class disease resistance gene analogues have no difference among different species of wild rice. 5 classes STK disease resistance gene analogues were also obtained among which 4 classes from Oryza rufipogon Griff. , 1 class from Oryza officinalis Wall. By comparison analysis of amino acid sequences. we found that the obtained disease resistance gene analogues have very low identity(low to 25%) with the reported disease resistance gene L6, N, Bs2, Prf, Pto, Lr10 and Xa21 etc. The finding suggests that the obtained disease resistance gene analogues are analogues of putative disease resistance genes that have not been isolated so far. 展开更多
关键词 Wild rice disease-resistance gene Nucleotide-binding site ( NBS) Leucine-rich repeat (LRR) Serine/threonine protein kinase(STK) ANALOGUES
下载PDF
Resequencing-based QTL mapping for yield and resistance traits reveals great potential of Oryza longistaminata in rice breeding 被引量:1
15
作者 Weixiong Long Nengwu Li +5 位作者 Jie Jin Jie Wang Dong Dan Fengfeng Fan Zhiyong Gao Shaoqing Li 《The Crop Journal》 SCIE CSCD 2023年第5期1541-1549,共9页
As a natural genetic reservoir, wild rice contains many favorable alleles and mutations conferring high yield and resistance to biotic and abiotic stresses. However, there are few reports describing favorable genes or... As a natural genetic reservoir, wild rice contains many favorable alleles and mutations conferring high yield and resistance to biotic and abiotic stresses. However, there are few reports describing favorable genes or QTL from the AA genome wild rice O. longistaminata, which is characterized by tall and robust habit and long tassels and anthers and shows high potential for use in cultivated rice improvement. We constructed a stable BC_(2)F_(20) backcross inbred line(BIL) population of 152 lines from the cross of 9311 × O.longistaminat. Some BILs showed large panicles, large seeds, and strong resistance to rice false smut, bacterial leaf blight, rice blast spot, and brown planthopper. Genomic resequencing showed that the 152 BILs covered about 99.6% of the O. longistaminata genome. QTL mapping with 2432 bin markers revealed 13QTL associated with seven yield traits and eight with resistance to brown planthopper and to four diseases. Of these QTL, 12 for grain yield and 11 for pest and disease resistance are novel in Oryza species.A large-panicle NIL1880 line containing QTL qPB8.1 showed a nearly 50% increase in spikelet number and27.5% in grain yield compared to the recurrent parent 9311. These findings support the potential value of O. longistaminata for cultivated rice improvement. 展开更多
关键词 Oryza longistaminata High yield High disease and pest resistance qtl
下载PDF
Comparison of Positions of QTLs Conferring Resistance to <i>Xanthomonas campestris</i>pv. <i>campestris</i>in <i>Brassica oleracea</i> 被引量:4
16
作者 Nazmoon Naher Tonu Md. Asad-ud Doullah +4 位作者 Motoki Shimizu Md. Masud Karim Takahiro Kawanabe Ryo Fujimoto Keiichi Okazaki 《American Journal of Plant Sciences》 2013年第8期11-20,共10页
Black rot, caused by Xanthomonas campestris pv. campestris (Xcc) is possibly the most important disease of Brassica worldwide. To compare chromosomal positions of Xcc resistance loci in Brassica oleracea between the p... Black rot, caused by Xanthomonas campestris pv. campestris (Xcc) is possibly the most important disease of Brassica worldwide. To compare chromosomal positions of Xcc resistance loci in Brassica oleracea between the present and published studies and to develop marker assisted selection (MAS) to resistance against Xcc race 1, we constructed a B. oleracea map, including pW, pX and BoCL markers that were closely linked to previously reported Xcc resistance QTLs. We also analyzed Xcc resistance QTLs by improving our previously reported map derived from the cross of a susceptible double-haploid line (GC P09) with a resistant double-haploid line (Reiho P01). In the nine linkage groups obtained (C1-C9), the major QTL, XccBo(Reiho)2, was derived from Reiho with a maximum LOD score (7.7) in C8. The QTL (LOD 4.4) located in C9, XccBo(GC)1 was derived from the susceptible GC. The other QTL (LOD 4.4), XccBo(Reiho)1, was found in C5. Based on common markers, it was possible to compare our finding Xcc resistance QTLs with the B. oleraceaXcc loci reported by previous authors;XccBo(Reiho)1 and XccBo(GC)1 may be identical to the Xcc resistance QTLs reported previously or a different member contained in the same resistance gene cluster. Our map includes public SSR markers linked to Xcc resistance genes that will promote pyramiding Xcc resistance genes in B. oleracea. The present study will also contribute to a better understanding of genetic control of Xcc resistance. 展开更多
关键词 Black Rot disease resistance qtl XANTHOMONAS CAMPESTRIS pv. CAMPESTRIS
下载PDF
Pediatric fatty liver disease:Role of ethnicity and genetics 被引量:5
17
作者 Pierluigi Marzuillo Emanuele Miraglia del Giudice Nicola Santoro 《World Journal of Gastroenterology》 SCIE CAS 2014年第23期7347-7355,共9页
Non-alcoholic fatty liver disease (NAFLD) comprehends a wide range of conditions, encompassing from fatty liver or steatohepatitis with or without fibrosis, to cirrhosis and its complications. NAFLD has become the mos... Non-alcoholic fatty liver disease (NAFLD) comprehends a wide range of conditions, encompassing from fatty liver or steatohepatitis with or without fibrosis, to cirrhosis and its complications. NAFLD has become the most common form of liver disease in childhood as its prevalence has more than doubled over the past 20 years, paralleling the increased prevalence of childhood obesity. It currently affects between 3% and 11% of the pediatric population reaching the rate of 46% among overweight and obese children and adolescents. The prevalence of hepatic steatosis varies among different ethnic groups. The ethnic group with the highest prevalence is the Hispanic one followed by the Caucasian and the African-American. This evidence suggests that there is a strong genetic background in the predisposition to fatty liver. In fact, since 2008 several common gene variants have been implicated in the pathogenesis of fatty liver disease. The most important is probably the patatin like phospholipase containing domain 3 gene (PNPLA3) discovered by the Hobbs&#x02019; group in 2008. This article reviews the current knowledge regarding the role of ethnicity and genetics in pathogenesis of pediatric fatty liver. 展开更多
关键词 Non alcoholic fatty liver disease ETHNICITY Patatin like phospholipase containing domain 3 gene Obesity Insulin resistance Glucokinase regulatory protein Apolipoprotein C3 gene Farnesyl-diphosphate farnesyltransferase 1
下载PDF
Identification of QTLs Associated with Resistance to Pseudomonas syringae pv.Glycinea in Soybean(Glycine max(L.)Merr)
18
作者 Mei Hong-yao Liu Yang +2 位作者 Pan Xiao-cheng Su An-yu Wu Xiao-xia 《Journal of Northeast Agricultural University(English Edition)》 CAS 2021年第2期1-14,共14页
Soybean bacterial spot disease caused by Pseudomonas syringae pv.Glycinea which is a bacterial disease seriously affects soybean yield.Ten soybean germplasms and recombinant inbred lines(RILs)population were used to i... Soybean bacterial spot disease caused by Pseudomonas syringae pv.Glycinea which is a bacterial disease seriously affects soybean yield.Ten soybean germplasms and recombinant inbred lines(RILs)population were used to identify the resistant trait after inoculated with P.sg(P.sgneau001)in this study.High-density genetic mapping was obtained by specific length amplified fragment sequencing(SLAF-seq)of 149 RILs population which was derived from the crossing between Charleston and Dongnong594.The results indicated that 10 germplasm resources had four resistant germplasms included highly resistant cultivar Charleston,four susceptible varieties included Dongnong594 and two moderately resistant cultivars.Five quantitative trait locus(QTLs)were detected in RILs population by the composite interval mapping(CIM)method,and located on Linkage Group(LG)D1b(chromosome two),LG C2(chromosome six)and LG H(chromosome 12),respectively.LOD scores ranged from 2.68 to 4.95 and the phenotypic variation percentage was from 6%to 11%.Six candidate genes were detected,according to the result of gene annotation information.Four of them had relationship with protein kinase activity,protein phosphorylation and leucine rich repeat(LRR)transmembrane protein,which had high expression after inoculated with P.sg by qRT-PCR. 展开更多
关键词 SOYBEAN qtl mapping Pseudomonas syringae pv.Glycinea bacterial spot disease candidate gene
下载PDF
甘薯茎线虫病抗扩展性遗传特性分析与QTL定位
19
作者 闫会 张成玲 +4 位作者 张允刚 马居奎 马猛 孙厚俊 李强 《植物遗传资源学报》 CAS CSCD 北大核心 2023年第6期1766-1777,共12页
甘薯茎线虫病由马铃薯腐烂线虫引起,是严重影响甘薯产量和品质的检疫性病害。挖掘抗茎线虫病基因并通过分子设计育种培育抗病品种是防控茎线虫病的有效途径。本研究前期以抗茎线虫病甘薯品种美国红为父本,感病品种徐紫薯8号为母本,通过... 甘薯茎线虫病由马铃薯腐烂线虫引起,是严重影响甘薯产量和品质的检疫性病害。挖掘抗茎线虫病基因并通过分子设计育种培育抗病品种是防控茎线虫病的有效途径。本研究前期以抗茎线虫病甘薯品种美国红为父本,感病品种徐紫薯8号为母本,通过控制授粉有性杂交方式构建了包含274个F1子代的分离群体。以该F1群体为材料,利用室内人工接种法对F_(1)子代的茎线虫病抗扩展性进行鉴定,结果表明,甘薯茎线虫病抗扩展性呈连续性偏峰态分布,甘薯茎线虫病发病体积比与扩展直径和扩展长度呈极显著正相关,与薯块直径、薯块长度和薯块长宽比无相关性,说明薯块的大小和薯形对抗扩展性鉴定结果无影响。甘薯茎线虫病抗扩展性遗传力为75.7%,表明抗扩展性主要受遗传因素控制。基于前期构建的甘薯SNP遗传图谱对抗扩展性进展QTL定位,获得与抗扩展性紧密连锁的QTL 10个,解释6.6%~10.7%的表型变异。候选基因功能注释表明,苯丙素生物合成、植物激素信号转导、植物病原互作代谢等通路参与抗病胁迫。筛选5个关键候选基因进行荧光定量表达分析,在接种茎线虫后候选基因itf13g19570表达量显著增高。研究结果为甘薯茎线虫病抗病基因挖掘和抗病机理解析提供了重要参考。 展开更多
关键词 甘薯茎线虫病 F1群体 遗传力 qtl定位 候选基因注释
下载PDF
Disease control by regulation of P-glycoprotein on lymphocytes in patients with rheumatoid arthritis 被引量:8
20
作者 Shizuyo Tsujimura Yoshiya Tanaka 《World Journal of Experimental Medicine》 2015年第4期225-231,共7页
The main purpose of treatment of rheumatoid arthritis(RA) with disease modifying antirheumatic drugs(DMARDs) is to control activation of lymphocytes,although some patients do not respond adequately to such treatment. ... The main purpose of treatment of rheumatoid arthritis(RA) with disease modifying antirheumatic drugs(DMARDs) is to control activation of lymphocytes,although some patients do not respond adequately to such treatment. Among various mechanisms of multidrug resistance, P-glycoprotein(P-gp), a member of ATP-binding cassette transporters, causes drugresistance by efflux of intracellular drugs. Certain stimuli,such as tumor necrosis factor-α, activate lymphocytes and induce P-gp expression on lymphocytes, as evident in active RA. Studies from our laboratories showed spontaneous nuclear accumulation of human Y-boxbinding protein-1, a multidrug resistance 1 transcription factor, in unstimulated lymphocytes, and surface overexpression of P-gp on peripheral lymphocytes of RA patients with high disease activity. The significant correlation between P-gp expression level and RA disease activity is associated with active efflux of drugs from the lymphocyte cytoplasm and in drugresistance.However, the use of biological agents that reduce P-gp expression as well as P-gp antagonists(e.g., cyclosporine) can successfully reduce the efflux of corticosteroids from lymphocytes in vitro, suggesting that both types of drugs can be used to overcome drug-resistance and improve clinical outcome. We conclude that lymphocytes activated by various stimuli in RA patients with highly active disease acquire P-gpmediated multidrug resistance against corticosteroids and probably some DMARDs, which are substrates of P-gp. Inhibition/reduction of P-gp could overcome such drug resistance. Expression of P-gp on lymphocytes is a promising marker of drug resistance and a suitable therapeutic target to prevent drug resistance in patients with active RA. 展开更多
关键词 MULTIDRUG resistance 1 gene P-GLYCOPROTEIN LYMPHOCYTES disease activity RHEUMATOID ARTHRITIS
下载PDF
上一页 1 2 41 下一页 到第
使用帮助 返回顶部