Type 2 diabetes mellitus and Parkinson's disease are chronic diseases linked to a growing pandemic that affects older adults and causes significant socio-economic burden.Epidemiological data supporting a close rel...Type 2 diabetes mellitus and Parkinson's disease are chronic diseases linked to a growing pandemic that affects older adults and causes significant socio-economic burden.Epidemiological data supporting a close relationship between these two aging-related diseases have resulted in the investigation of shared pathophysiological molecular mechanisms.Impaired insulin signaling in the brain has gained increasing attention during the last decade and has been suggested to contribute to the development of Parkinson's disease through the dysregulation of several pathological processes.The contribution of type 2 diabetes mellitus and insulin resistance in neurodegeneration in Parkinson's disease,with emphasis on brain insulin resistance,is extensively discussed in this article and new therapeutic strategies targeting this pathological link are presented and reviewed.展开更多
This paper outlines the physiological responses of plants to pathogenic microbial infection and pest feeding stress,as well as the resistance characteristics of plants to diseases and pests,and proposes new directions...This paper outlines the physiological responses of plants to pathogenic microbial infection and pest feeding stress,as well as the resistance characteristics of plants to diseases and pests,and proposes new directions for future research on crop resistance to diseases and pests.The objective of this paper is to provide a reference framework for the breeding of crops with enhanced resistance to diseases and pests,the utilization of natural immunity in crops,and the efficient prevention and control of diseases and pests.This framework is intended to facilitate the healthy and sustainable development of the agricultural industry.展开更多
The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular an...The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular and cellular mechanisms by which quinolinic acid contributes to Huntington's disease pathology remain unknown. In this study, we established in vitro and in vivo models of Huntington's disease by administering quinolinic acid to the PC12 neuronal cell line and the striatum of mice, respectively. We observed a decrease in the levels of hydrogen sulfide in both PC12 cells and mouse serum, which was accompanied by down-regulation of cystathionine β-synthase, an enzyme responsible for hydrogen sulfide production. However, treatment with NaHS(a hydrogen sulfide donor) increased hydrogen sulfide levels in the neurons and in mouse serum, as well as cystathionine β-synthase expression in the neurons and the mouse striatum, while also improving oxidative imbalance and mitochondrial dysfunction in PC12 cells and the mouse striatum. These beneficial effects correlated with upregulation of nuclear factor erythroid 2-related factor 2 expression. Finally, treatment with the nuclear factor erythroid 2-related factor 2inhibitor ML385 reversed the beneficial impact of exogenous hydrogen sulfide on quinolinic acid-induced oxidative stress. Taken together, our findings show that hydrogen sulfide reduces oxidative stress in Huntington's disease by activating nuclear factor erythroid 2-related factor 2,suggesting that hydrogen sulfide is a novel neuroprotective drug candidate for treating patients with Huntington's disease.展开更多
Diabetes mellitus(DM)and Alzheimer's disease(AD)are two major health concerns that have seen a rising prevalence worldwide.Recent studies have indicated a possible link between DM and an increased risk of developi...Diabetes mellitus(DM)and Alzheimer's disease(AD)are two major health concerns that have seen a rising prevalence worldwide.Recent studies have indicated a possible link between DM and an increased risk of developing AD.Insulin,while primarily known for its role in regulating blood sugar,also plays a vital role in protecting brain functions.Insulin resistance(IR),especially prevalent in type 2 diabetes,is believed to play a significant role in AD's development.When insulin signalling becomes dysfunctional,it can negatively affect various brain functions,making individuals more susceptible to AD's defining features,such as the buildup of beta-amyloid plaques and tau protein tangles.Emerging research suggests that addressing insulin-related issues might help reduce or even reverse the brain changes linked to AD.This review aims to explore the relationship between DM and AD,with a focus on the role of IR.It also explores the molecular mechanisms by which IR might lead to brain changes and assesses current treatments that target IR.Understanding IR's role in the connection between DM and AD offers new possibilities for treatments and highlights the importance of continued research in this interdisciplinary field.展开更多
The traditional method of screening plants for disease resistance phenotype is both time-consuming and costly.Genomic selection offers a potential solution to improve efficiency,but accurately predicting plant disease...The traditional method of screening plants for disease resistance phenotype is both time-consuming and costly.Genomic selection offers a potential solution to improve efficiency,but accurately predicting plant disease resistance remains a challenge.In this study,we evaluated eight different machine learning(ML)methods,including random forest classification(RFC),support vector classifier(SVC),light gradient boosting machine(lightGBM),random forest classification plus kinship(RFC_K),support vector classification plus kinship(SVC_K),light gradient boosting machine plus kinship(lightGBM_K),deep neural network genomic prediction(DNNGP),and densely connected convolutional networks(DenseNet),for predicting plant disease resistance.Our results demonstrate that the three plus kinship(K)methods developed in this study achieved high prediction accuracy.Specifically,these methods achieved accuracies of up to 95%for rice blast(RB),85%for rice black-streaked dwarf virus(RBSDV),and 85%for rice sheath blight(RSB)when trained and applied to the rice diversity panel I(RDPI).Furthermore,the plus K models performed well in predicting wheat blast(WB)and wheat stripe rust(WSR)diseases,with mean accuracies of up to 90%and 93%,respectively.To assess the generalizability of our models,we applied the trained plus K methods to predict RB disease resistance in an independent population,rice diversity panel II(RDPII).Concurrently,we evaluated the RB resistance of RDPII cultivars using spray inoculation.Comparing the predictions with the spray inoculation results,we found that the accuracy of the plus K methods reached 91%.These findings highlight the effectiveness of the plus K methods(RFC_K,SVC_K,and lightGBM_K)in accurately predicting plant disease resistance for RB,RBSDV,RSB,WB,and WSR.The methods developed in this study not only provide valuable strategies for predicting disease resistance,but also pave the way for using machine learning to streamline genome-based crop breeding.展开更多
Kiwifruit canker and brown spot are significant diseases affecting kiwis,caused by Pseudomonas syringae patho-genic variations(Pseudomonas syringae pv.Actinidiae(Psa))and Corynesporapolytica(Corynespora cassiicola).At ...Kiwifruit canker and brown spot are significant diseases affecting kiwis,caused by Pseudomonas syringae patho-genic variations(Pseudomonas syringae pv.Actinidiae(Psa))and Corynesporapolytica(Corynespora cassiicola).At present,the research on canker disease and brown spot disease mainly focuses on the isolation and identification of pathogenic bacteria,drug control,resistance gene mining and functional verification.Practice has proved that breeding disease resistant varieties are an effective method to control canker disease and brown spot disease.However,most existing cultivars lack genes for canker and brown spot resistance.Wild kiwifruit resources in nat-ure exhibit extensive genetic diversity due to prolonged natural selection,containing numerous resistance genes.But,due to insufficient understanding of the resistance of most kiwifruit varieties(lines)to canker disease and brown spot disease,some high-quality resources have not been fully utilized.The incidence of canker and brown spot of 18 kiwifruit cultivars(lines)was measured by inoculating isolated branches and leaves,and their resistance to canker and brown spot was analyzed according to the length,disease index,mean diameter,and systematic clustering.The results were as follows:Among 18 different kiwifruit varieties(lines)for canker disease,there were two highly resistant materials,eight disease-resistant materials,four disease-susceptible materials,and two highly susceptible materials.Moreover,regarding brown spot disease,there were one highly resistant material,five dis-ease-resistant materials,four susceptible materials,and three highly susceptible materials.Furthermore,four resources were resistant to both diseases.The outcomes provided a theoretical basis for breeding kiwifruit against canker and brown spot.展开更多
Through the use of a survey and statistical methods, this study explores the effects and interventions of handheld Tai Chi water resistance fitness balls on the elderly with Parkinson’s disease. Firstly, a questionna...Through the use of a survey and statistical methods, this study explores the effects and interventions of handheld Tai Chi water resistance fitness balls on the elderly with Parkinson’s disease. Firstly, a questionnaire on exercise compliance for patients with Parkinson’s disease was developed, and its reliability and validity were tested. Then, a survey was conducted to investigate the current status of exercise compliance among Parkinson’s disease patients, including general information, scoring status, and single and multiple factor analyses of influencing factors [1]. The results of the study show that through qualitative research, the dimensions and item pools of the questionnaire were initially constructed, and the reliability analysis of the questionnaire was conducted through Delphi expert consultation, with favorable results in terms of its reliability and validity [2]. Regarding the current status of exercise compliance among Parkinson’s disease patients, the study found that the level of exercise compliance needs improvement, and there are significant differences in exercise compliance levels among patients under different circumstances. Finally, the research results were discussed and conclusions were drawn. The innovation of this study lies in the development of a questionnaire on exercise compliance for patients with Parkinson’s disease and the preliminary qualitative research and Delphi expert consultation conducted on it, providing new ideas and methods for the study of exercise compliance. However, the study also has limitations as it did not examine the effects of other interventions on Parkinson’s disease, so further research should be conducted [3].展开更多
BACKGROUND Nonalcoholic fatty liver disease(NAFLD)is a liver condition that is prevalent worldwide and associated with significant health risks and economic burdens.As it has been linked to insulin resistance(IR),this...BACKGROUND Nonalcoholic fatty liver disease(NAFLD)is a liver condition that is prevalent worldwide and associated with significant health risks and economic burdens.As it has been linked to insulin resistance(IR),this study aimed to perform a bibliometric analysis and visually represent the scientific literature on IR and NAFLD.AIM To map the research landscape to underscore critical areas of focus,influential studies,and future directions of NAFLD and IR.METHODS This study conducted a bibliometric analysis of the literature on IR and NAFLD indexed in the SciVerse Scopus database from 1999 to 2022.The search strategy used terms from the literature and medical subject headings,focusing on terms related to IR and NAFLD.VOSviewer software was used to visualize research trends,collaborations,and key thematic areas.The analysis examined publication type,annual research output,contributing countries and institutions,funding agencies,journal impact factors,citation patterns,and highly cited references.RESULTS This analysis identified 23124 documents on NAFLD,revealing a significant increase in the number of publications between 1999 and 2022.The search retrieved 715 papers on IR and NAFLD,including 573(80.14%)articles and 88(12.31%)reviews.The most productive countries were China(n=134;18.74%),the United States(n=122;17.06%),Italy(n=97;13.57%),and Japan(n=41;5.73%).The leading institutions included the Universitàdegli Studi di Torino,Italy(n=29;4.06%),and the Consiglio Nazionale delle Ricerche,Italy(n=19;2.66%).The top funding agencies were the National Institute of Diabetes and Digestive and Kidney Diseases in the United States(n=48;6.71%),and the National Natural Science Foundation of China(n=37;5.17%).The most active journals in this field were Hepatology(27 publications),the Journal of Hepatology(17 publications),and the Journal of Clinical Endocrinology and Metabolism(13 publications).The main research hotspots were“therapeutic approaches for IR and NAFLD”and“inflammatory and high-fat diet impacts on NAFLD”.CONCLUSION This is the first bibliometric analysis to examine the relationship between IR and NAFLD.In response to the escalating global health challenge of NAFLD,this research highlights an urgent need for a better understanding of this condition and for the development of intervention strategies.Policymakers need to prioritize and address the increasing prevalence of NAFLD.展开更多
Liliangyou 3822 is a novel indica hybrid rice variety that exhibits disease resistance,high yield,lodging resistance,and late maturity.It employs a self-selected two-line sterile line,Li 38S,and a self-selected restor...Liliangyou 3822 is a novel indica hybrid rice variety that exhibits disease resistance,high yield,lodging resistance,and late maturity.It employs a self-selected two-line sterile line,Li 38S,and a self-selected restorer line,R22.This variety was subjected to a regional test of indica late-maturing groups in the middle and lower reaches of the Yangtze River in 2020.The results demonstrated that the average yield of the variety was 9.95 t/hm 2,which was 10.67%higher than that of the control Fengliangyou 4,indicating a highly significant yield increase.In the continuous test in 2021,the average yield was 9.74 t/hm 2,representing a 6.52%increase over the control,which also exhibited a significant increase.Finally,the average yield of the two years regional test was 9.84 t/hm 2,which was 8.58%higher than that of the control.In the 2021 production test,the average yield of the variety was 9.32 t/hm 2,which was 12.19%higher than that of the control,indicating a remarkably significant yield increase.In 2022,the variety was validated by the National Crop Variety Approval Committee(GSD 20220143).展开更多
With global warming and frequent occurrence of severe weather,rice diseases are also on the rise.Therefore,the breeding of new rice varieties with disease resistance is still the breeding direction for rice breeding e...With global warming and frequent occurrence of severe weather,rice diseases are also on the rise.Therefore,the breeding of new rice varieties with disease resistance is still the breeding direction for rice breeding experts."Liangyou 7968"is a new hybrid rice combination with double resistance to bacterial blight and rice blast.This paper introduced the breeding process,characteristics,high-yielding cultivation techniques and high-yielding seed production technical regulations for Liangyou 7968.展开更多
BACKGROUND Epidemiological studies have revealed a correlation between Alzheimer’s disease(AD)and type 2 diabetes mellitus(T2D).Insulin resistance in the brain is a common feature in patients with T2D and AD.KAT7 is ...BACKGROUND Epidemiological studies have revealed a correlation between Alzheimer’s disease(AD)and type 2 diabetes mellitus(T2D).Insulin resistance in the brain is a common feature in patients with T2D and AD.KAT7 is a histone acetyltransferase that participates in the modulation of various genes.AIM To determine the effects of KAT7 on insulin patients with AD.METHODS APPswe/PS1-dE9 double-transgenic and db/db mice were used to mimic AD and diabetes,respectively.An in vitro model of AD was established by Aβstimulation.Insulin resistance was induced by chronic stimulation with high insulin levels.The expression of microtubule-associated protein 2(MAP2)was assessed using immunofluorescence.The protein levels of MAP2,Aβ,dual-specificity tyrosine phosphorylation-regulated kinase-1A(DYRK1A),IRS-1,p-AKT,total AKT,p-GSK3β,total GSK3β,DYRK1A,and KAT7 were measured via western blotting.Accumulation of reactive oxygen species(ROS),malondialdehyde(MDA),and SOD activity was measured to determine cellular oxidative stress.Flow cytometry and CCK-8 assay were performed to evaluate neuronal cell death and proliferation,respectively.Relative RNA levels of KAT7 and DYRK1A were examined using quantitative PCR.A chromatin immunoprecipitation assay was conducted to detect H3K14ac in DYRK1A.RESULTS KAT7 expression was suppressed in the AD mice.Overexpression of KAT7 decreased Aβaccumulation and MAP2 expression in AD brains.KAT7 overexpression decreased ROS and MDA levels,elevated SOD activity in brain tissues and neurons,and simultaneously suppressed neuronal apoptosis.KAT7 upregulated levels of p-AKT and p-GSK3βto alleviate insulin resistance,along with elevated expression of DYRK1A.KAT7 depletion suppressed DYRK1A expression and impaired H3K14ac of DYRK1A.HMGN1 overexpression recovered DYRK1A levels and reversed insulin resistance caused by KAT7 depletion.CONCLUSION We determined that KAT7 overexpression recovered insulin sensitivity in AD by recruiting HMGN1 to enhance DYRK1A acetylation.Our findings suggest that KAT7 is a novel and promising therapeutic target for the resistance in AD.展开更多
In 2021,the Shanting District Fruit Industry Service Center conducted an application test of a treatment for jujube witches broom disease using Changyun jujube.The results demonstrated that when diseased Changhong juj...In 2021,the Shanting District Fruit Industry Service Center conducted an application test of a treatment for jujube witches broom disease using Changyun jujube.The results demonstrated that when diseased Changhong jujube plants were grafted with Changyun jujube in the spring using bark or cleft grafting,the majority of the new shoots of Changyun jujube exhibited no symptoms of witches broom disease,while a few exhibited symptoms of the disease.With the growth of new shoots,the symptoms of witches broom disease gradually abated,returning to normal growth and development.Similarly,the symptoms of witches broom disease on the rootstock below the grafting mouth also gradually abated,returning to normal.The Changyun jujube rootstock was utilized as the intermediate rootstock to grafting the jujube cultivars Qiyuexian and Fucuimi.The two cultivars were subsequently affixed with branch bark from the witches broom disease.The two cultivars did not exhibit any symptoms of witches broom disease,thus providing an opportunity to investigate potential treatments for this disease in jujube.Finally,the cultivation techniques of the Changyun jujube were presented.展开更多
Plants employ multifaceted mechanisms to fight with numerous pathogens in nature. Resistance (R) genes are the most effective weapons against pathogen invasion since they can specifically recognize the corresponding...Plants employ multifaceted mechanisms to fight with numerous pathogens in nature. Resistance (R) genes are the most effective weapons against pathogen invasion since they can specifically recognize the corresponding pathogen effectors or associated protein(s) to activate plant immune responses at the site of infection. Up to date, over 70 R genes have been isolated from various plant species. Most R proteins contain conserved motifs such as nucleotide-binding site (NBS), leucine-rich repeat (LRR), Toll-interleukin-1 receptor domain (TIR, homologous to cytoplasmic domains of the Drosophila Toll protein and the manamalian intefleukin-1 receptor), coiled-coil (CC) or leucine zipper (LZ) structure and protein kinase domain (PK). Recent results indicate that these domains play significant roles in R protein interactions with effector proteins from pathogens and in activating signal transduction pathways involved in innate immunity. This review highlights an overview of the recent progress in elucidating the structure, function and evolution of the isolated R genes in different plant-pathogen interaction systems.展开更多
Based on the results of the national regional trail for winter rapeseed in four groups,including the upper reaches,middle reaches and lower reaches of Yangtze River and Huang-Huai region in the past twenty years,new v...Based on the results of the national regional trail for winter rapeseed in four groups,including the upper reaches,middle reaches and lower reaches of Yangtze River and Huang-Huai region in the past twenty years,new varieties of winter rapeseed showed upward trend in average yield,the yield level in Huang-huai group was higher than other groups.The changes of average effective pods per plant were not significant in any group,but the number of grain per pod and 1 000-grain weight showed increase trend.However,the increment of grains per pod in three Yangtze River groups was higher than that in Huang-Huai River group,while the increment of 1 000-grain weight was just opposite.The incidence rate of Sclerotinia sclerotiorum and viral disease in new varieties of winter rapeseed obviously decreased,and the incidence rate of S.sclerotiorum decreased lower than 5%.Genetic improvement for winter rapeseed should be focus on the number of grain per pod and 1 000-grain weight in the future,and yield level of new varieties in all four groups is expected to increase.展开更多
von Willebrand factor A(vWA)genes are well characterized in humans except for few BONZAI genes,but the vWA genes are least explored in plants.Considering the novelty and vital role of vWA genes,this study aimed at cha...von Willebrand factor A(vWA)genes are well characterized in humans except for few BONZAI genes,but the vWA genes are least explored in plants.Considering the novelty and vital role of vWA genes,this study aimed at characterization of vWA superfamily in rice.Rice genome was found to have 40 vWA genes distributed across all the 12 chromosomes,and 20 of the 40 vWA genes were unique while the remaining shared large fragment similarities with each other,indicating gene duplication.In addition to vWA domain,vWA proteins possess other different motifs or domains,such as ubiquitin interacting motif in protein degradation pathway,and RING finger in protein-protein interaction.Expression analysis of vWA genes in available expression data suggested that they probably function in biotic and abiotic stress responses including hormonal response and signaling.The frequency of transposon elements in the entire 3K rice germplasm was negligible except for 9 vWA genes,indicating the importance of these genes in rice.Structural and functional diversities showed that the vWA genes in a blast-resistant rice variety Tetep had huge variations compared to blast-susceptible rice varieties HP2216 and Nipponbare.qRT-PCR analysis of vWA genes in Magnaporthe oryzae infected rice tissues indicated OsvWA9,OsvWA36,OsvWA37 and OsvWA18 as the optimal candidate genes for disease resistance.This is the first attempt to characterize vWA gene family in plant species.展开更多
Conserved domains e.g. nucleotide binding site (NBS) were found in several cloned plant disease resistance genes. Based on the NBS domain, resistance gene analogs (RGAs) have been isolated previously and were used as ...Conserved domains e.g. nucleotide binding site (NBS) were found in several cloned plant disease resistance genes. Based on the NBS domain, resistance gene analogs (RGAs) have been isolated previously and were used as probes to screen a soybean (Glycine max L. Merr.) cDNA library. A full-length cDNA, KR3, was obtained by screening the library and rapid amplification of cDNA ends (RACE) method. Sequence analysis revealed that the cDNA is 2 353 bp in length and the open reading frame (ORF) codes for a polypeptide of 636 amino acids with a Toll-Interleukin-1 receptor (TIR) and a NBS domain. Sequence alignment showed that it was similar to N gene of tobacco. The phylogenetic tree analysis of R proteins with NBS from higher plants was performed. The KR3 gene has low copies in soybean genome and its expression was induced by exogenous salicylic acid (SA).展开更多
[Objective] This study was to identify the expression of exogenous antimicrobial peptide in transgenic Houttuynia cordata Thunb. plants,and analyze their resistance to stem rot disease. [Methods] SDS-PAGE and Western ...[Objective] This study was to identify the expression of exogenous antimicrobial peptide in transgenic Houttuynia cordata Thunb. plants,and analyze their resistance to stem rot disease. [Methods] SDS-PAGE and Western blot analysis were employed to detect expression of exogenous antimicrobial peptide in transgenic H. cordata plants. Both wild type and transgenic H. cordata plants were inoculated with different concentrations of Rhizoctonia solani spores for detecting their resistance. [Results] The exogenous antimicrobial peptide was detected at translation level. The optimal parameters for detecting the resistance of transgenic H. cordata plants to R. solani was inoculation of spores at a concentration of 3×105 ind./ml and cultured for three days. The results showed that resistance of transgenic H. cordata plants to R. solani was enhanced in comparison with CKs. [Conclusion] Expression of exogenous antimicrobial peptide can enhance the resistance of transgenic H. cordata plants to stem rot disease.展开更多
In this paper,the identification,screening and evaluation of resistance in partial tomato cultivars of Sichuan Province were carried out in natural disease nursery so as to provide a scientific basis for the breeding ...In this paper,the identification,screening and evaluation of resistance in partial tomato cultivars of Sichuan Province were carried out in natural disease nursery so as to provide a scientific basis for the breeding of disease-resistant cultivars.The result showed most of the tomato cultivars had certain resistance to main diseases.Some tomato cultivars even had resistance to 2-3 kinds of diseases simultaneously.The tested tomato cultivars showed the highest resistance to Fusarium wilt,and 73.33% of the tested cultivars were resistant.In terms of Botrytis cinerea,40.00% of the tomato cultivars are resistant and 50.00% of the tomato cultivars are tolerant.Most of the tomato cultivars are moderately resistant to late blight.However,tomato cultivars are generally susceptible to viral disease.The viral disease-resistant tomato cultivars only accounted for 13.33% of the total cultivars.展开更多
Inflammatory markers and mediators that affect the development of cardiovascular diseases have been the focus of recent scientific work.Thus,the purpose of this editorial is to promote a critical debate about the arti...Inflammatory markers and mediators that affect the development of cardiovascular diseases have been the focus of recent scientific work.Thus,the purpose of this editorial is to promote a critical debate about the article titled“Nε-carboxymethyl-lysine and inflammatory cytokines,markers,and mediators of coronary artery disease progression in diabetes”,published in the World Journal of Diabetes in 2024.This work directs us to reflect on the role of advanced glycation end products,which are pro-inflammatory products arising from the metabolism of fatty acids and sugars whose main marker in tissues is Nε-carboxymethyllysine(NML).Recent studies have linked high levels of pro-inflammatory agents with the development of coronary artery disease(CAD),especially tumor necrosis factor alpha,interleukins,and C-reactive protein.These inflammatory agents increase the production of reactive oxygen species(ROS),of which people with diabetes are known to have an increased production.The increase in ROS promotes lipid peroxidation,which causes damage to myocytes,promoting myocardial damage.Furthermore,oxidative stress induces the binding of NML to its receptor RAGE,which in turn activates the nuclear factor-kB,and consequently,inflammatory cytokines.These inflammatory cytokines induce endothelial dysfunction,with increased expression of adhesion molecules,changes in endothelial permeability and changes in the expression of nitric oxide.In this sense,the therapeutic use of monoclonal antibodies(inflammatory reducers such as statins and sodium-glucose transport inhibitors)has demonstrated positive results in the regression of atherogenic plaques and consequently CAD.On the other hand,many studies have demonstrated a relationship between mitochondrial dynamics,diabetes,and cardiovascular diseases.This link occurs since ROS have their origin in the imbalance in glucose metabolism that occurs in the mitochondrial matrix,and this imbalance can have its origin in inadequate diet as well as some pathologies.Photobiomodulation(PBM)has recently been considered a possible therapeutic agent for cardiovascular diseases due to its effects on mitochondrial dynamics and oxidative stress.In this sense,therapies such as PBM that act on pro-inflammatory mediators and mitochondrial modulation could benefit those with cardiovascular diseases.展开更多
Abiotic stresses, such as drought, salt, extreme temperatures, and heavy metal pollution, are the main environmental factors that limit crop growth and yield. Sorghum, a C4 grass plant with high photosynthetic efficie...Abiotic stresses, such as drought, salt, extreme temperatures, and heavy metal pollution, are the main environmental factors that limit crop growth and yield. Sorghum, a C4 grass plant with high photosynthetic efficiency, can grow in adverse environmental conditions due to its excellent stress resistance characteristics. Therefore, unraveling the stress-resistance mechanism of sorghum could provide a theoretical basis for developing and cultivating various stress-resistant crops. This understanding could also help to create a conducive environment for using marginal soil in agriculture and ensuring food security. In this review, we discuss the adaptation mechanisms of sorghum under drought, salinity, temperature, and soil heavy metal stresses, the specific response to stress, the screening of sorghum-resistant germplasm, and the identification and functional analysis of the relevant genes and quantitative trait loci(QTL). In addition, we discuss the application potential of different stress-tolerant sorghum germplasms reported to date and emphasize the feasibility and potential use in developing and promoting highly stress-tolerant sorghum in marginal soil.展开更多
基金support from Region Stockholm,ALF-project(FoUI-960041)Open Access funding is provided by Karolinska Institute(both to IM)。
文摘Type 2 diabetes mellitus and Parkinson's disease are chronic diseases linked to a growing pandemic that affects older adults and causes significant socio-economic burden.Epidemiological data supporting a close relationship between these two aging-related diseases have resulted in the investigation of shared pathophysiological molecular mechanisms.Impaired insulin signaling in the brain has gained increasing attention during the last decade and has been suggested to contribute to the development of Parkinson's disease through the dysregulation of several pathological processes.The contribution of type 2 diabetes mellitus and insulin resistance in neurodegeneration in Parkinson's disease,with emphasis on brain insulin resistance,is extensively discussed in this article and new therapeutic strategies targeting this pathological link are presented and reviewed.
基金Supported by Science and Technology Innovation Guidance Project of Zhaoqing in 2023(2023040308006)Major Science and Technology Special Project of Yunnan Province(202202AE090036)+1 种基金Open Project of Yunnan State Key Laboratory for Conservation and Utilization of Bio-Resources(gzkf2022004)Innovation Platform Construction Project of Zhaoqing University in 2024(202413004).
文摘This paper outlines the physiological responses of plants to pathogenic microbial infection and pest feeding stress,as well as the resistance characteristics of plants to diseases and pests,and proposes new directions for future research on crop resistance to diseases and pests.The objective of this paper is to provide a reference framework for the breeding of crops with enhanced resistance to diseases and pests,the utilization of natural immunity in crops,and the efficient prevention and control of diseases and pests.This framework is intended to facilitate the healthy and sustainable development of the agricultural industry.
基金supported by the National Natural Science Foundation of China,Nos.82271327 (to ZW),82072535 (to ZW),81873768 (to ZW),and 82001253 (to TL)。
文摘The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular and cellular mechanisms by which quinolinic acid contributes to Huntington's disease pathology remain unknown. In this study, we established in vitro and in vivo models of Huntington's disease by administering quinolinic acid to the PC12 neuronal cell line and the striatum of mice, respectively. We observed a decrease in the levels of hydrogen sulfide in both PC12 cells and mouse serum, which was accompanied by down-regulation of cystathionine β-synthase, an enzyme responsible for hydrogen sulfide production. However, treatment with NaHS(a hydrogen sulfide donor) increased hydrogen sulfide levels in the neurons and in mouse serum, as well as cystathionine β-synthase expression in the neurons and the mouse striatum, while also improving oxidative imbalance and mitochondrial dysfunction in PC12 cells and the mouse striatum. These beneficial effects correlated with upregulation of nuclear factor erythroid 2-related factor 2 expression. Finally, treatment with the nuclear factor erythroid 2-related factor 2inhibitor ML385 reversed the beneficial impact of exogenous hydrogen sulfide on quinolinic acid-induced oxidative stress. Taken together, our findings show that hydrogen sulfide reduces oxidative stress in Huntington's disease by activating nuclear factor erythroid 2-related factor 2,suggesting that hydrogen sulfide is a novel neuroprotective drug candidate for treating patients with Huntington's disease.
文摘Diabetes mellitus(DM)and Alzheimer's disease(AD)are two major health concerns that have seen a rising prevalence worldwide.Recent studies have indicated a possible link between DM and an increased risk of developing AD.Insulin,while primarily known for its role in regulating blood sugar,also plays a vital role in protecting brain functions.Insulin resistance(IR),especially prevalent in type 2 diabetes,is believed to play a significant role in AD's development.When insulin signalling becomes dysfunctional,it can negatively affect various brain functions,making individuals more susceptible to AD's defining features,such as the buildup of beta-amyloid plaques and tau protein tangles.Emerging research suggests that addressing insulin-related issues might help reduce or even reverse the brain changes linked to AD.This review aims to explore the relationship between DM and AD,with a focus on the role of IR.It also explores the molecular mechanisms by which IR might lead to brain changes and assesses current treatments that target IR.Understanding IR's role in the connection between DM and AD offers new possibilities for treatments and highlights the importance of continued research in this interdisciplinary field.
基金supported by the National Natural Science Foundation of China(32261143468)the National Key Research and Development(R&D)Program of China(2021YFC2600400)+1 种基金the Seed Industry Revitalization Project of Jiangsu Province(JBGS(2021)001)the Project of Zhongshan Biological Breeding Laboratory(BM2022008-02)。
文摘The traditional method of screening plants for disease resistance phenotype is both time-consuming and costly.Genomic selection offers a potential solution to improve efficiency,but accurately predicting plant disease resistance remains a challenge.In this study,we evaluated eight different machine learning(ML)methods,including random forest classification(RFC),support vector classifier(SVC),light gradient boosting machine(lightGBM),random forest classification plus kinship(RFC_K),support vector classification plus kinship(SVC_K),light gradient boosting machine plus kinship(lightGBM_K),deep neural network genomic prediction(DNNGP),and densely connected convolutional networks(DenseNet),for predicting plant disease resistance.Our results demonstrate that the three plus kinship(K)methods developed in this study achieved high prediction accuracy.Specifically,these methods achieved accuracies of up to 95%for rice blast(RB),85%for rice black-streaked dwarf virus(RBSDV),and 85%for rice sheath blight(RSB)when trained and applied to the rice diversity panel I(RDPI).Furthermore,the plus K models performed well in predicting wheat blast(WB)and wheat stripe rust(WSR)diseases,with mean accuracies of up to 90%and 93%,respectively.To assess the generalizability of our models,we applied the trained plus K methods to predict RB disease resistance in an independent population,rice diversity panel II(RDPII).Concurrently,we evaluated the RB resistance of RDPII cultivars using spray inoculation.Comparing the predictions with the spray inoculation results,we found that the accuracy of the plus K methods reached 91%.These findings highlight the effectiveness of the plus K methods(RFC_K,SVC_K,and lightGBM_K)in accurately predicting plant disease resistance for RB,RBSDV,RSB,WB,and WSR.The methods developed in this study not only provide valuable strategies for predicting disease resistance,but also pave the way for using machine learning to streamline genome-based crop breeding.
基金supported by the following grants:Science and Technology Support Plan of Guizhou Province:Breeding Research and Demonstration of all-Red Bud Transformation of“GH-1”Clone of“Hong yang”Kiwifruit(Guizhou Family Combination Support[2021]General 234)the National Key Research and Development Program“Quality and Efficiency Improvement Technology Integration and Demonstration of Advantageous Characteristic Industries in Guizhou Karst Mountain Area(2021YFD1100300)”Post-Subsidy FundTask 3 of National Key Research and Development Program,Green Prevention and Control Technology Integration and Demonstration of Main Diseases and Insect Pests of Kiwifruit in Shuicheng City,China(2022YFD1601710-3).
文摘Kiwifruit canker and brown spot are significant diseases affecting kiwis,caused by Pseudomonas syringae patho-genic variations(Pseudomonas syringae pv.Actinidiae(Psa))and Corynesporapolytica(Corynespora cassiicola).At present,the research on canker disease and brown spot disease mainly focuses on the isolation and identification of pathogenic bacteria,drug control,resistance gene mining and functional verification.Practice has proved that breeding disease resistant varieties are an effective method to control canker disease and brown spot disease.However,most existing cultivars lack genes for canker and brown spot resistance.Wild kiwifruit resources in nat-ure exhibit extensive genetic diversity due to prolonged natural selection,containing numerous resistance genes.But,due to insufficient understanding of the resistance of most kiwifruit varieties(lines)to canker disease and brown spot disease,some high-quality resources have not been fully utilized.The incidence of canker and brown spot of 18 kiwifruit cultivars(lines)was measured by inoculating isolated branches and leaves,and their resistance to canker and brown spot was analyzed according to the length,disease index,mean diameter,and systematic clustering.The results were as follows:Among 18 different kiwifruit varieties(lines)for canker disease,there were two highly resistant materials,eight disease-resistant materials,four disease-susceptible materials,and two highly susceptible materials.Moreover,regarding brown spot disease,there were one highly resistant material,five dis-ease-resistant materials,four susceptible materials,and three highly susceptible materials.Furthermore,four resources were resistant to both diseases.The outcomes provided a theoretical basis for breeding kiwifruit against canker and brown spot.
文摘Through the use of a survey and statistical methods, this study explores the effects and interventions of handheld Tai Chi water resistance fitness balls on the elderly with Parkinson’s disease. Firstly, a questionnaire on exercise compliance for patients with Parkinson’s disease was developed, and its reliability and validity were tested. Then, a survey was conducted to investigate the current status of exercise compliance among Parkinson’s disease patients, including general information, scoring status, and single and multiple factor analyses of influencing factors [1]. The results of the study show that through qualitative research, the dimensions and item pools of the questionnaire were initially constructed, and the reliability analysis of the questionnaire was conducted through Delphi expert consultation, with favorable results in terms of its reliability and validity [2]. Regarding the current status of exercise compliance among Parkinson’s disease patients, the study found that the level of exercise compliance needs improvement, and there are significant differences in exercise compliance levels among patients under different circumstances. Finally, the research results were discussed and conclusions were drawn. The innovation of this study lies in the development of a questionnaire on exercise compliance for patients with Parkinson’s disease and the preliminary qualitative research and Delphi expert consultation conducted on it, providing new ideas and methods for the study of exercise compliance. However, the study also has limitations as it did not examine the effects of other interventions on Parkinson’s disease, so further research should be conducted [3].
文摘BACKGROUND Nonalcoholic fatty liver disease(NAFLD)is a liver condition that is prevalent worldwide and associated with significant health risks and economic burdens.As it has been linked to insulin resistance(IR),this study aimed to perform a bibliometric analysis and visually represent the scientific literature on IR and NAFLD.AIM To map the research landscape to underscore critical areas of focus,influential studies,and future directions of NAFLD and IR.METHODS This study conducted a bibliometric analysis of the literature on IR and NAFLD indexed in the SciVerse Scopus database from 1999 to 2022.The search strategy used terms from the literature and medical subject headings,focusing on terms related to IR and NAFLD.VOSviewer software was used to visualize research trends,collaborations,and key thematic areas.The analysis examined publication type,annual research output,contributing countries and institutions,funding agencies,journal impact factors,citation patterns,and highly cited references.RESULTS This analysis identified 23124 documents on NAFLD,revealing a significant increase in the number of publications between 1999 and 2022.The search retrieved 715 papers on IR and NAFLD,including 573(80.14%)articles and 88(12.31%)reviews.The most productive countries were China(n=134;18.74%),the United States(n=122;17.06%),Italy(n=97;13.57%),and Japan(n=41;5.73%).The leading institutions included the Universitàdegli Studi di Torino,Italy(n=29;4.06%),and the Consiglio Nazionale delle Ricerche,Italy(n=19;2.66%).The top funding agencies were the National Institute of Diabetes and Digestive and Kidney Diseases in the United States(n=48;6.71%),and the National Natural Science Foundation of China(n=37;5.17%).The most active journals in this field were Hepatology(27 publications),the Journal of Hepatology(17 publications),and the Journal of Clinical Endocrinology and Metabolism(13 publications).The main research hotspots were“therapeutic approaches for IR and NAFLD”and“inflammatory and high-fat diet impacts on NAFLD”.CONCLUSION This is the first bibliometric analysis to examine the relationship between IR and NAFLD.In response to the escalating global health challenge of NAFLD,this research highlights an urgent need for a better understanding of this condition and for the development of intervention strategies.Policymakers need to prioritize and address the increasing prevalence of NAFLD.
文摘Liliangyou 3822 is a novel indica hybrid rice variety that exhibits disease resistance,high yield,lodging resistance,and late maturity.It employs a self-selected two-line sterile line,Li 38S,and a self-selected restorer line,R22.This variety was subjected to a regional test of indica late-maturing groups in the middle and lower reaches of the Yangtze River in 2020.The results demonstrated that the average yield of the variety was 9.95 t/hm 2,which was 10.67%higher than that of the control Fengliangyou 4,indicating a highly significant yield increase.In the continuous test in 2021,the average yield was 9.74 t/hm 2,representing a 6.52%increase over the control,which also exhibited a significant increase.Finally,the average yield of the two years regional test was 9.84 t/hm 2,which was 8.58%higher than that of the control.In the 2021 production test,the average yield of the variety was 9.32 t/hm 2,which was 12.19%higher than that of the control,indicating a remarkably significant yield increase.In 2022,the variety was validated by the National Crop Variety Approval Committee(GSD 20220143).
基金Supported by Anhui Provincial Key Research and Development Project(2023n06020013).
文摘With global warming and frequent occurrence of severe weather,rice diseases are also on the rise.Therefore,the breeding of new rice varieties with disease resistance is still the breeding direction for rice breeding experts."Liangyou 7968"is a new hybrid rice combination with double resistance to bacterial blight and rice blast.This paper introduced the breeding process,characteristics,high-yielding cultivation techniques and high-yielding seed production technical regulations for Liangyou 7968.
基金Supported by Natural Science Foundation of Shandong Province,No.ZR2020MH147National Natural Science Foundation of China,No.82002343.
文摘BACKGROUND Epidemiological studies have revealed a correlation between Alzheimer’s disease(AD)and type 2 diabetes mellitus(T2D).Insulin resistance in the brain is a common feature in patients with T2D and AD.KAT7 is a histone acetyltransferase that participates in the modulation of various genes.AIM To determine the effects of KAT7 on insulin patients with AD.METHODS APPswe/PS1-dE9 double-transgenic and db/db mice were used to mimic AD and diabetes,respectively.An in vitro model of AD was established by Aβstimulation.Insulin resistance was induced by chronic stimulation with high insulin levels.The expression of microtubule-associated protein 2(MAP2)was assessed using immunofluorescence.The protein levels of MAP2,Aβ,dual-specificity tyrosine phosphorylation-regulated kinase-1A(DYRK1A),IRS-1,p-AKT,total AKT,p-GSK3β,total GSK3β,DYRK1A,and KAT7 were measured via western blotting.Accumulation of reactive oxygen species(ROS),malondialdehyde(MDA),and SOD activity was measured to determine cellular oxidative stress.Flow cytometry and CCK-8 assay were performed to evaluate neuronal cell death and proliferation,respectively.Relative RNA levels of KAT7 and DYRK1A were examined using quantitative PCR.A chromatin immunoprecipitation assay was conducted to detect H3K14ac in DYRK1A.RESULTS KAT7 expression was suppressed in the AD mice.Overexpression of KAT7 decreased Aβaccumulation and MAP2 expression in AD brains.KAT7 overexpression decreased ROS and MDA levels,elevated SOD activity in brain tissues and neurons,and simultaneously suppressed neuronal apoptosis.KAT7 upregulated levels of p-AKT and p-GSK3βto alleviate insulin resistance,along with elevated expression of DYRK1A.KAT7 depletion suppressed DYRK1A expression and impaired H3K14ac of DYRK1A.HMGN1 overexpression recovered DYRK1A levels and reversed insulin resistance caused by KAT7 depletion.CONCLUSION We determined that KAT7 overexpression recovered insulin sensitivity in AD by recruiting HMGN1 to enhance DYRK1A acetylation.Our findings suggest that KAT7 is a novel and promising therapeutic target for the resistance in AD.
文摘In 2021,the Shanting District Fruit Industry Service Center conducted an application test of a treatment for jujube witches broom disease using Changyun jujube.The results demonstrated that when diseased Changhong jujube plants were grafted with Changyun jujube in the spring using bark or cleft grafting,the majority of the new shoots of Changyun jujube exhibited no symptoms of witches broom disease,while a few exhibited symptoms of the disease.With the growth of new shoots,the symptoms of witches broom disease gradually abated,returning to normal growth and development.Similarly,the symptoms of witches broom disease on the rootstock below the grafting mouth also gradually abated,returning to normal.The Changyun jujube rootstock was utilized as the intermediate rootstock to grafting the jujube cultivars Qiyuexian and Fucuimi.The two cultivars were subsequently affixed with branch bark from the witches broom disease.The two cultivars did not exhibit any symptoms of witches broom disease,thus providing an opportunity to investigate potential treatments for this disease in jujube.Finally,the cultivation techniques of the Changyun jujube were presented.
基金This work was supported by grants from the Natural Science Foundation of China (No. 30470990, No. 30571063)the"948"Project from the Minister of Agriculture in China, the"973"Project from the Minister of Science and Technology (No.2006CB101904)+1 种基金Hunan Natural Science Foundation (No.06JJ10006)Scientific Research Fund of Hunan Provincial Education department (No.04A024).
文摘Plants employ multifaceted mechanisms to fight with numerous pathogens in nature. Resistance (R) genes are the most effective weapons against pathogen invasion since they can specifically recognize the corresponding pathogen effectors or associated protein(s) to activate plant immune responses at the site of infection. Up to date, over 70 R genes have been isolated from various plant species. Most R proteins contain conserved motifs such as nucleotide-binding site (NBS), leucine-rich repeat (LRR), Toll-interleukin-1 receptor domain (TIR, homologous to cytoplasmic domains of the Drosophila Toll protein and the manamalian intefleukin-1 receptor), coiled-coil (CC) or leucine zipper (LZ) structure and protein kinase domain (PK). Recent results indicate that these domains play significant roles in R protein interactions with effector proteins from pathogens and in activating signal transduction pathways involved in innate immunity. This review highlights an overview of the recent progress in elucidating the structure, function and evolution of the isolated R genes in different plant-pathogen interaction systems.
文摘Based on the results of the national regional trail for winter rapeseed in four groups,including the upper reaches,middle reaches and lower reaches of Yangtze River and Huang-Huai region in the past twenty years,new varieties of winter rapeseed showed upward trend in average yield,the yield level in Huang-huai group was higher than other groups.The changes of average effective pods per plant were not significant in any group,but the number of grain per pod and 1 000-grain weight showed increase trend.However,the increment of grains per pod in three Yangtze River groups was higher than that in Huang-Huai River group,while the increment of 1 000-grain weight was just opposite.The incidence rate of Sclerotinia sclerotiorum and viral disease in new varieties of winter rapeseed obviously decreased,and the incidence rate of S.sclerotiorum decreased lower than 5%.Genetic improvement for winter rapeseed should be focus on the number of grain per pod and 1 000-grain weight in the future,and yield level of new varieties in all four groups is expected to increase.
基金the Indian Council of Agricultural Research(ICAR)-National Institute for Plant Biotechnology,National Agricultural Higher Education Project:Centre for Advanced Agricultural Science and Technology(Grant No.1010033)ICAR-Centre for Agricultural Bioinformatics,Indian Agricultural Statistics Research Institute,New Delhi(IASRI)(Grant No.1006456).
文摘von Willebrand factor A(vWA)genes are well characterized in humans except for few BONZAI genes,but the vWA genes are least explored in plants.Considering the novelty and vital role of vWA genes,this study aimed at characterization of vWA superfamily in rice.Rice genome was found to have 40 vWA genes distributed across all the 12 chromosomes,and 20 of the 40 vWA genes were unique while the remaining shared large fragment similarities with each other,indicating gene duplication.In addition to vWA domain,vWA proteins possess other different motifs or domains,such as ubiquitin interacting motif in protein degradation pathway,and RING finger in protein-protein interaction.Expression analysis of vWA genes in available expression data suggested that they probably function in biotic and abiotic stress responses including hormonal response and signaling.The frequency of transposon elements in the entire 3K rice germplasm was negligible except for 9 vWA genes,indicating the importance of these genes in rice.Structural and functional diversities showed that the vWA genes in a blast-resistant rice variety Tetep had huge variations compared to blast-susceptible rice varieties HP2216 and Nipponbare.qRT-PCR analysis of vWA genes in Magnaporthe oryzae infected rice tissues indicated OsvWA9,OsvWA36,OsvWA37 and OsvWA18 as the optimal candidate genes for disease resistance.This is the first attempt to characterize vWA gene family in plant species.
文摘Conserved domains e.g. nucleotide binding site (NBS) were found in several cloned plant disease resistance genes. Based on the NBS domain, resistance gene analogs (RGAs) have been isolated previously and were used as probes to screen a soybean (Glycine max L. Merr.) cDNA library. A full-length cDNA, KR3, was obtained by screening the library and rapid amplification of cDNA ends (RACE) method. Sequence analysis revealed that the cDNA is 2 353 bp in length and the open reading frame (ORF) codes for a polypeptide of 636 amino acids with a Toll-Interleukin-1 receptor (TIR) and a NBS domain. Sequence alignment showed that it was similar to N gene of tobacco. The phylogenetic tree analysis of R proteins with NBS from higher plants was performed. The KR3 gene has low copies in soybean genome and its expression was induced by exogenous salicylic acid (SA).
基金Supported by National Natural Science Foundation of China(30772737)~~
文摘[Objective] This study was to identify the expression of exogenous antimicrobial peptide in transgenic Houttuynia cordata Thunb. plants,and analyze their resistance to stem rot disease. [Methods] SDS-PAGE and Western blot analysis were employed to detect expression of exogenous antimicrobial peptide in transgenic H. cordata plants. Both wild type and transgenic H. cordata plants were inoculated with different concentrations of Rhizoctonia solani spores for detecting their resistance. [Results] The exogenous antimicrobial peptide was detected at translation level. The optimal parameters for detecting the resistance of transgenic H. cordata plants to R. solani was inoculation of spores at a concentration of 3×105 ind./ml and cultured for three days. The results showed that resistance of transgenic H. cordata plants to R. solani was enhanced in comparison with CKs. [Conclusion] Expression of exogenous antimicrobial peptide can enhance the resistance of transgenic H. cordata plants to stem rot disease.
基金Supported by Crop Breeding Key Projects of Sichuan Province(2011NZ0098-17-62011NZ0098-7)~~
文摘In this paper,the identification,screening and evaluation of resistance in partial tomato cultivars of Sichuan Province were carried out in natural disease nursery so as to provide a scientific basis for the breeding of disease-resistant cultivars.The result showed most of the tomato cultivars had certain resistance to main diseases.Some tomato cultivars even had resistance to 2-3 kinds of diseases simultaneously.The tested tomato cultivars showed the highest resistance to Fusarium wilt,and 73.33% of the tested cultivars were resistant.In terms of Botrytis cinerea,40.00% of the tomato cultivars are resistant and 50.00% of the tomato cultivars are tolerant.Most of the tomato cultivars are moderately resistant to late blight.However,tomato cultivars are generally susceptible to viral disease.The viral disease-resistant tomato cultivars only accounted for 13.33% of the total cultivars.
文摘Inflammatory markers and mediators that affect the development of cardiovascular diseases have been the focus of recent scientific work.Thus,the purpose of this editorial is to promote a critical debate about the article titled“Nε-carboxymethyl-lysine and inflammatory cytokines,markers,and mediators of coronary artery disease progression in diabetes”,published in the World Journal of Diabetes in 2024.This work directs us to reflect on the role of advanced glycation end products,which are pro-inflammatory products arising from the metabolism of fatty acids and sugars whose main marker in tissues is Nε-carboxymethyllysine(NML).Recent studies have linked high levels of pro-inflammatory agents with the development of coronary artery disease(CAD),especially tumor necrosis factor alpha,interleukins,and C-reactive protein.These inflammatory agents increase the production of reactive oxygen species(ROS),of which people with diabetes are known to have an increased production.The increase in ROS promotes lipid peroxidation,which causes damage to myocytes,promoting myocardial damage.Furthermore,oxidative stress induces the binding of NML to its receptor RAGE,which in turn activates the nuclear factor-kB,and consequently,inflammatory cytokines.These inflammatory cytokines induce endothelial dysfunction,with increased expression of adhesion molecules,changes in endothelial permeability and changes in the expression of nitric oxide.In this sense,the therapeutic use of monoclonal antibodies(inflammatory reducers such as statins and sodium-glucose transport inhibitors)has demonstrated positive results in the regression of atherogenic plaques and consequently CAD.On the other hand,many studies have demonstrated a relationship between mitochondrial dynamics,diabetes,and cardiovascular diseases.This link occurs since ROS have their origin in the imbalance in glucose metabolism that occurs in the mitochondrial matrix,and this imbalance can have its origin in inadequate diet as well as some pathologies.Photobiomodulation(PBM)has recently been considered a possible therapeutic agent for cardiovascular diseases due to its effects on mitochondrial dynamics and oxidative stress.In this sense,therapies such as PBM that act on pro-inflammatory mediators and mitochondrial modulation could benefit those with cardiovascular diseases.
基金financial support from the National Key R&D Program of China(2022YFD1201702)the National Natural Science Foundation of China(32272040)the Agricultural Fine Seed Project of Shandong Province,China(2021LZGC006)。
文摘Abiotic stresses, such as drought, salt, extreme temperatures, and heavy metal pollution, are the main environmental factors that limit crop growth and yield. Sorghum, a C4 grass plant with high photosynthetic efficiency, can grow in adverse environmental conditions due to its excellent stress resistance characteristics. Therefore, unraveling the stress-resistance mechanism of sorghum could provide a theoretical basis for developing and cultivating various stress-resistant crops. This understanding could also help to create a conducive environment for using marginal soil in agriculture and ensuring food security. In this review, we discuss the adaptation mechanisms of sorghum under drought, salinity, temperature, and soil heavy metal stresses, the specific response to stress, the screening of sorghum-resistant germplasm, and the identification and functional analysis of the relevant genes and quantitative trait loci(QTL). In addition, we discuss the application potential of different stress-tolerant sorghum germplasms reported to date and emphasize the feasibility and potential use in developing and promoting highly stress-tolerant sorghum in marginal soil.