The identification of communities is imperative in the understanding of network structures and functions.Using community detection algorithms in biological networks, the community structure of biological networks can ...The identification of communities is imperative in the understanding of network structures and functions.Using community detection algorithms in biological networks, the community structure of biological networks can be determined, which is helpful in analyzing the topological structures and predicting the behaviors of biological networks. In this paper, we analyze the diseasome network using a new method called disease-gene network detecting algorithm based on principal component analysis, which can be used to investigate the connection between nodes within the same group. Experimental results on real-world networks have demonstrated that our algorithm is more efficient in detecting community structures when compared with other well-known results.展开更多
It has long been a challenging task to detect an anomaly in a crowded scene.In this paper,a selfsupervised framework called the abnormal event detection network(AED-Net),which is composed of a principal component anal...It has long been a challenging task to detect an anomaly in a crowded scene.In this paper,a selfsupervised framework called the abnormal event detection network(AED-Net),which is composed of a principal component analysis network(PCAnet)and kernel principal component analysis(kPCA),is proposed to address this problem.Using surveillance video sequences of different scenes as raw data,the PCAnet is trained to extract high-level semantics of the crowd’s situation.Next,kPCA,a one-class classifier,is trained to identify anomalies within the scene.In contrast to some prevailing deep learning methods,this framework is completely self-supervised because it utilizes only video sequences of a normal situation.Experiments in global and local abnormal event detection are carried out on Monitoring Human Activity dataset from University of Minnesota(UMN dataset)and Anomaly Detection dataset from University of California,San Diego(UCSD dataset),and competitive results that yield a better equal error rate(EER)and area under curve(AUC)than other state-of-the-art methods are observed.Furthermore,by adding a local response normalization(LRN)layer,we propose an improvement to the original AED-Net.The results demonstrate that this proposed version performs better by promoting the framework’s generalization capacity.展开更多
The use of a Traffic Matrix(TM) to describe the characteristics of a global network has attracted significant interest in network performance research. Due to the high dimensionality and sparsity of network traffic,...The use of a Traffic Matrix(TM) to describe the characteristics of a global network has attracted significant interest in network performance research. Due to the high dimensionality and sparsity of network traffic, Principal Component Analysis(PCA) has been successfully applied to TM analysis. PCA is one of the most common methods used in analysis of high-dimensional objects. This paper shows how to apply PCA to TM analysis and anomaly detection. The experiment results demonstrate that the PCA-based method can detect anomalies for both single and multiple nodes with high accuracy and efficiency.展开更多
基金supported in part by the Natural Science Foundation of Education Department of Jiangsu Province(No.12KJB520019)the National Science Foundation of Jiangsu Province (No.BK20130452)+2 种基金Science and Technology Innovation Foundation of Yangzhou University (No.2012CXJ026)the National Natural Science Foundation of China (Nos.61070047,61070133,and 61003180)the National Key Basic Research and Development (973) Program of China (No.2012CB316003)
文摘The identification of communities is imperative in the understanding of network structures and functions.Using community detection algorithms in biological networks, the community structure of biological networks can be determined, which is helpful in analyzing the topological structures and predicting the behaviors of biological networks. In this paper, we analyze the diseasome network using a new method called disease-gene network detecting algorithm based on principal component analysis, which can be used to investigate the connection between nodes within the same group. Experimental results on real-world networks have demonstrated that our algorithm is more efficient in detecting community structures when compared with other well-known results.
基金This work is partially supported by the National Key Research and Development Program of China(2016YFE0204200)the National Natural Science Foundation of China(61503017)+3 种基金the Fundamental Research Funds for the Central Universities(YWF-18-BJ-J-221)the Aeronautical Science Foundation of China(2016ZC51022)the Platform CAPSEC(capteurs pour la sécurité)funded by Région Champagne-ArdenneFEDER(fonds européen de développement régional).
文摘It has long been a challenging task to detect an anomaly in a crowded scene.In this paper,a selfsupervised framework called the abnormal event detection network(AED-Net),which is composed of a principal component analysis network(PCAnet)and kernel principal component analysis(kPCA),is proposed to address this problem.Using surveillance video sequences of different scenes as raw data,the PCAnet is trained to extract high-level semantics of the crowd’s situation.Next,kPCA,a one-class classifier,is trained to identify anomalies within the scene.In contrast to some prevailing deep learning methods,this framework is completely self-supervised because it utilizes only video sequences of a normal situation.Experiments in global and local abnormal event detection are carried out on Monitoring Human Activity dataset from University of Minnesota(UMN dataset)and Anomaly Detection dataset from University of California,San Diego(UCSD dataset),and competitive results that yield a better equal error rate(EER)and area under curve(AUC)than other state-of-the-art methods are observed.Furthermore,by adding a local response normalization(LRN)layer,we propose an improvement to the original AED-Net.The results demonstrate that this proposed version performs better by promoting the framework’s generalization capacity.
基金supported by the National Natural Science Foundation of China (No. 61100218)
文摘The use of a Traffic Matrix(TM) to describe the characteristics of a global network has attracted significant interest in network performance research. Due to the high dimensionality and sparsity of network traffic, Principal Component Analysis(PCA) has been successfully applied to TM analysis. PCA is one of the most common methods used in analysis of high-dimensional objects. This paper shows how to apply PCA to TM analysis and anomaly detection. The experiment results demonstrate that the PCA-based method can detect anomalies for both single and multiple nodes with high accuracy and efficiency.