Lithium sulfur(Li-S)battery is a kind of burgeoning energy storage system with high energy density.However,the electrolyte-soluble intermediate lithium polysulfides(Li PSs)undergo notorious shuttle effect,which seriou...Lithium sulfur(Li-S)battery is a kind of burgeoning energy storage system with high energy density.However,the electrolyte-soluble intermediate lithium polysulfides(Li PSs)undergo notorious shuttle effect,which seriously hinders the commercialization of Li-S batteries.Herein,a unique VSe_(2)/V_(2)C heterostructure with local built-in electric field was rationally engineered from V_(2)C parent via a facile thermal selenization process.It exquisitely synergizes the strong affinity of V_(2)C with the effective electrocatalytic activity of VSe_(2).More importantly,the local built-in electric field at the heterointerface can sufficiently promote the electron/ion transport ability and eventually boost the conversion kinetics of sulfur species.The Li-S battery equipped with VSe_(2)/V_(2)C-CNTs-PP separator achieved an outstanding initial specific capacity of 1439.1 m A h g^(-1)with a high capacity retention of 73%after 100 cycles at0.1 C.More impressively,a wonderful capacity of 571.6 mA h g^(-1)was effectively maintained after 600cycles at 2 C with a capacity decay rate of 0.07%.Even under a sulfur loading of 4.8 mg cm^(-2),areal capacity still can be up to 5.6 m A h cm^(-2).In-situ Raman tests explicitly illustrate the effectiveness of VSe_(2)/V_(2)C-CNTs modifier in restricting Li PSs shuttle.Combined with density functional theory calculations,the underlying mechanism of VSe_(2)/V_(2)C heterostructure for remedying Li PSs shuttling and conversion kinetics was deciphered.The strategy of constructing VSe_(2)/V_(2)C heterocatalyst in this work proposes a universal protocol to design metal selenide-based separator modifier for Li-S battery.Besides,it opens an efficient avenue for the separator engineering of Li-S batteries.展开更多
As a special order of electronic correlation induced by spatial modulation, the charge density wave(CDW) phenomena in condensed matters attract enormous research interests. Here, using scanning-tunneling microscopy in...As a special order of electronic correlation induced by spatial modulation, the charge density wave(CDW) phenomena in condensed matters attract enormous research interests. Here, using scanning-tunneling microscopy in various temperatures, we discover a hidden incommensurate stripe-like CDW order besides the(■) CDW phase at low-temperature of 4 K in the epitaxial monolayer 1T-VSe_(2) film. Combining the variable-temperature angle-resolved photoemission spectroscopic(ARPES) measurements, we discover a two-step transition of an anisotropic CDW gap structure that consists of two parts △_(1) and△_(2). The gap part ?1 that closes around ~ 150 K is accompanied with the vanish of the(√7×√3) CDW phase. While another momentum-dependent gap part △_(2) can survive up to ~ 340 K, and is suggested to the result of the incommensurate CDW phase. This two-step transition with anisotropic gap opening and the resulted evolution in ARPES spectra are corroborated by our theoretical calculation based on a phenomenological form for the self-energy containing a two-gap structure △_(1) +△_(2), which suggests different forming mechanisms between the(√7×√3) and the incommensurate CDW phases. Our findings provide significant information and deep understandings on the CDW phases in monolayer 1T-VSe_(2) film as a two-dimensional(2D) material.展开更多
本文采用简单的一步水热法合成了1T-VSe_(2)@rGO复合材料,在APC电解液环境下,并将其作为第二代可充电镁离子电池的正极材料。测试结果显示,1T-VSe_(2)@rGO复合正极材料在50 mA g^(-1)下具有263 mAh g^(-1)的高可逆容量,在50 mA g^(-1)...本文采用简单的一步水热法合成了1T-VSe_(2)@rGO复合材料,在APC电解液环境下,并将其作为第二代可充电镁离子电池的正极材料。测试结果显示,1T-VSe_(2)@rGO复合正极材料在50 mA g^(-1)下具有263 mAh g^(-1)的高可逆容量,在50 mA g^(-1)下连续循环100次,可获得91%的初始电容的优秀循环寿命。因此,1T-VSe_(2)@rGO作为正极材料在镁离子和其他可充电电池中的应用打开了新的思路。展开更多
In this work, the AFORS-HET digital simulation software was used to calculate the electrical characteristics of the cell/n-ZnO/i-ZnO/n-Zn (O, S)/p-CIGSe<sub>2</sub>/p + -MoSe<sub>2</sub>/Mo/SLG...In this work, the AFORS-HET digital simulation software was used to calculate the electrical characteristics of the cell/n-ZnO/i-ZnO/n-Zn (O, S)/p-CIGSe<sub>2</sub>/p + -MoSe<sub>2</sub>/Mo/SLG. When the thickness of the CIGSe<sub>2</sub> absorber is between 3.5 and 1.5 μm, the efficiency of the cell with an interfacial layer of MoSe<sub>2</sub> remains almost constant, with an efficiency of about 24.6%, higher to that of a conventional cell which is 23.4% for a thickness of 1.5 μm of CIGSe<sub>2</sub>. To achieve the expected results, the MoSe<sub>2</sub> layer must be very thin less than or equal to 30 nm. In addition, a Schottky barrier height greater than 0.45 eV severely affects the fill factor and the open circuit voltage of the solar cell with MoSe<sub>2</sub> interface layer.展开更多
<span style="font-family:Verdana;">T</span><span style="font-family:Verdana;font-size:12px;">he T</span><span style="font-family:Verdana;font-size:12px;">i&l...<span style="font-family:Verdana;">T</span><span style="font-family:Verdana;font-size:12px;">he T</span><span style="font-family:Verdana;font-size:12px;">i</span><span style="font-family:Verdana;font-size:12px;">Se</span><sub><span style="font-family:Verdana;font-size:12px;">2</span></sub><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">nanosheets</span><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">were</span><span style="font-family:Verdana;font-size:12px;"> prepared by means of ultrasound-assisted liquid </span><span style="font-family:Verdana;font-size:12px;">phase exfoliation (LPE)</span><span style="font-family:Verdana;font-size:12px;"> and the </span><span style="font-family:Verdana;font-size:12px;">nonlinear </span><span style="font-family:Verdana;font-size:12px;">saturable absorption</span><span style="font-family:Verdana;font-size:12px;"> properties</span><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">were experimentally</span><span style="font-family:Verdana;font-size:12px;"> investigated. The modulation depth, saturation intensity and nonsaturable absorbance</span><span style="font-family:Verdana;font-size:12px;"> of the prepared </span><span style="font-family:Verdana;font-size:12px;">1T-TiSe</span><sub><span style="font-family:Verdana;font-size:12px;">2</span></sub><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">SA </span><span style="font-family:Verdana;font-size:12px;">were</span><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">1</span><span style="font-family:Verdana;font-size:12px;">5.7</span><span style="font-family:Verdana;font-size:12px;">%,</span><span style="font-family:Verdana;font-size:12px;"> 1.28 M</span><span style="font-family:Verdana;font-size:12px;">W/cm</span><sup><span style="font-family:Verdana;font-size:12px;vertical-align:super;">2</span></sup><span style="font-family:Verdana;font-size:12px;"> and 8.</span><span style="font-family:Verdana;font-size:12px;">2</span><span style="font-family:Verdana;font-size:12px;">%, </span><span style="font-family:Verdana;font-size:12px;">respectively</span><span style="font-family:Verdana;font-size:12px;">. Taking advantage of the saturable absorption properties of </span><span style="font-family:Verdana;font-size:12px;">T</span><span style="font-family:Verdana;font-size:12px;">i</span><span style="font-family:Verdana;font-size:12px;">Se</span><sub><span style="font-family:Verdana;font-size:12px;">2</span></sub><span style="font-family:Verdana;font-size:12px;">-based SA, a passively Q-switched erbium-doped fiber (EDF) laser was</span><span style="font-family:Verdana;font-size:12px;"> systematically demonstrated</span><span style="font-family:Verdana;font-size:12px;">. The pulse repetition rates varied from 24.50 kHz up to 73.79 kHz with the increasing pump power. The obtained shortest pulse width was 1.31 </span><span style="font-family:Verdana;font-size:12px;">μ</span><span style="font-family:Verdana;font-size:12px;">s with pulse energy of 79.28 nJ. The </span><span style="font-family:Verdana;font-size:12px;">system presented merits of low-cost SA preparation, system compactness,</span><span style="font-family:Verdana;font-size:12px;"> superb stability and high competition.</span>展开更多
Two-dimensional(2D)van der Waals(vdW)magnetic materials with reduced dimensionality often exhibit unexpected properties compared to their bulk counterparts.In particular,the mechanical flexibility of 2D structure,enha...Two-dimensional(2D)van der Waals(vdW)magnetic materials with reduced dimensionality often exhibit unexpected properties compared to their bulk counterparts.In particular,the mechanical flexibility of 2D structure,enhanced ferromagnetism at reduced layer thickness,as well as robust perpendicular magnetic anisotropy are quite appealing for constructing novel spintronic devices.The vdW vanadium diselenide(VSe_(2))is an attractive material whose bulk is paramagnetic while monolayer is ferromagnetic with a Curie temperature(Tc)above room temperature.To explore its possible device applications,a detailed investigation on the thickness-dependent magnetism and strain modulation behavior of VSe_(2)is highly demanded.In this article,the VSe_(2)nanoflakes were controllably prepared via chemical vapor deposition(CVD)method.The few-layer single VSe_(2)nanoflakes were found to exhibit magnetic domain structures at room temperature.Ambient magnetic force microscopy(MFM)phase images reveal a clear thickness-dependent magnetism and the MFM phase contrast is traceable for the nanoflakes of layer thickness below~6 nm.Moreover,applying strain is found efficient in modulating the magnetic moment and coercive field of 2D VSe_(2)at room temperature.These results are helpful for understanding the ferromagnetism of high temperature 2D magnets and for constructing novel straintronic devices or flexible spintronic devices.展开更多
There is an emerging need for high-sensitivity solar-blind deep ultraviolet(DUV)photodetectors with an ultra-fast response speed.Although nanoscale devices based on Ga_(2)O_(3)nanostructures have been developed,their ...There is an emerging need for high-sensitivity solar-blind deep ultraviolet(DUV)photodetectors with an ultra-fast response speed.Although nanoscale devices based on Ga_(2)O_(3)nanostructures have been developed,their practical applications are greatly limited by their slow response speed as well as low specific detectivity.Here,the successful fabrication of two-/three-dimensional(2D/3D)graphene(Gr)/PtSe2/β-Ga_(2)O_(3)Schottky junction devices for high-sensitivity solar-blind DUV photodetectors is demonstrated.Benefitting from the high-quality 2D/3D Schottky junction,the vertically stacked structure,and the superior-quality transparent graphene electrode for effective carrier collection,the photodetector is highly sensitive to DUV light illumination and achieves a high responsivity of 76.2 mA/W,a large on/off current ratio of~105,along with an ultra-high ultraviolet(UV)/visible rejection ratio of 1.8×104.More importantly,it has an ultra-fast response time of 12µs and a remarkable specific detectivity of~1013 Jones.Finally,an excellent DUV imaging capability has been identified based on the Gr/PtSe2/β-Ga_(2)O_(3)Schottky junction photodetector,demonstrating its great potential application in DUV imaging systems.展开更多
The anisotropic two-dimensional (2D) layered material rhenium disulfide (ReSe2) has attracted considerable attention because of its unusual properties and promising applications in electronic and optoelectronic de...The anisotropic two-dimensional (2D) layered material rhenium disulfide (ReSe2) has attracted considerable attention because of its unusual properties and promising applications in electronic and optoelectronic devices. However, because of its low lattice symmetry and interlayer decoupling, anisotropic growth and out-of-plane growth occur easily, yielding thick flakes, dendritic structure, or flower-like structure. In this stud34 we demonstrated a bottom-up method for the controlled and scalable synthesis of ReSe2 by van der Waals epitaxy. To achieve controllable growth, a micro-reactor with a confined reaction space was constructed by stacking two mica substrates in the chemical vapor deposition system. Within the confined reaction space, the nucleation density and growth rate of ReSe2 were significantly reduced, favoring the large-area synthesis of ReSe2 with a uniform monolayer thickness. The morphological evolution of ReSe2 with growth temperature indicated that the anisotropic growth was suppressed at a low growth temperature (〈600 ℃). Field-effect transistors employing the grown ReSe2 exhibited p-type conduction with a current ON/OFF ratio up to 10s and a hole carrier mobility of 0.98 cm^2/(V·s). Furthermore, the ReSe2 device exhibited an outstanding photoresponse to near-infrared light, with responsivity up to 8.4 and 5.1 A/W for 850- and 940-nm light, respectively. This work not only promotes the large-scale application of ReSe2 in high-performance electronic devices but also clarifies the growth mechanism of low-lattice symmetry 2D materials.展开更多
Two-dimensional(2D)materials have attracted increasing attention for their outstanding structural and electrical properties.However,for mass-production of field effect transistors(FETs)and potential applications in in...Two-dimensional(2D)materials have attracted increasing attention for their outstanding structural and electrical properties.However,for mass-production of field effect transistors(FETs)and potential applications in integrated circuits,large-area and uniform 2D thin films with high mobility,large on-off ratio,and desired polarity are needed to synthesize firstly.Here,a transfer-free growth method for platinum diselenide(PtSe2)films has been developed.The PtSe2 films have been synthesized with various thicknesses in centimeter-sized scale.Typical FET made from a few layer PtSe2 show p-type unipolar,with a high field-effect hole mobility of 6.2 cm^(2) V^(−1) s^(−1) and an on-off ratio of 5×10^(3).The versatile semimetal-unipolar-ambipolar transition in synthesized PtSe2 films is also firstly observed as the thickness thinning.This work realizes the large-scale preparation of PtSe2 with prominent electrical properties and provides a new strategy for polarity's modulation.展开更多
Orientation-controlled growth of two-dimensional(2D)transition metal dichalcogenides(TMDCs)may enable many new electronic and optical applications.However,previous studies reporting aligned growth of WSe2 usually yiel...Orientation-controlled growth of two-dimensional(2D)transition metal dichalcogenides(TMDCs)may enable many new electronic and optical applications.However,previous studies reporting aligned growth of WSe2 usually yielded very small domain sizes.Herein,we introduced gold vapor into the chemical vapor deposition(CVD)process as a catalyst to assist the growth of WSe2 and successfully achieved highly aligned monolayer WSe2 triangular flakes grown on c-plane sapphire with large domain sizes(130μm)and fast growth rate(4.3μm·s^−1).When the aligned WSe2 domains merged together,a continuous monolayer WSe2 was formed with good uniformity.After transferring to Si/SiO2 substrates,field effect transistors were fabricated on the continuous monolayer WSe2,and an average mobility of 12 cm^2·V^−1·s−1 was achieved,demonstrating the good quality of the material.This report paves the way to study the effect of catalytic metal vapor in the CVD process of TMDCs and contributes a novel approach to realize the growth of aligned TMDC flakes.展开更多
Single-crystalline transition metal dichalcogenides(TMD)films are of potential application in future electronics and optoelectronics.In this work,a halide vapor phase epitaxy(HVPE)strategy was proposed and demonstrate...Single-crystalline transition metal dichalcogenides(TMD)films are of potential application in future electronics and optoelectronics.In this work,a halide vapor phase epitaxy(HVPE)strategy was proposed and demonstrated for the epitaxy of molybdenum diselenide(MoSe_(2))single crystals,in which metal halide vapors were in-situ produced by the chlorination of molybdenum as sources for the TMD growth.Combined with the epitaxial sapphire substrate,unidirectional domain alignment was successfully achieved and monolayer single-crystal MoSe_(2) films have been demonstrated on a 2-inch wafer for the first time.A series of characterizations ranging from centimeter to nanometer scales have been implemented to demonstrate the high quality and uniformity of the MoSe_(2).This work provides a universal strategy for the growth of TMD single-crystal films.展开更多
In the presence of molecular iodine, the reaction of alkenes with diselenides proceeds efficiently under air and at room temperature in mixed solvent MeCN/H2O, which affording β-hydroxy selenides with high regioselec...In the presence of molecular iodine, the reaction of alkenes with diselenides proceeds efficiently under air and at room temperature in mixed solvent MeCN/H2O, which affording β-hydroxy selenides with high regioselectivity and in good to excellent yields. This iodine-mediated vicinal difunctionalization of alkenes requires mild reaction conditions and is a simple procedure, which extends the synthetic application of molecular iodine in organic synthesis.展开更多
基金supported by the National Natural Science Foundation of China(No.52072099)the Joint Guidance Project of the Natural Science Foundation of Heilongjiang Province,China(No.LH2022E093)the Team Program of the Natural Science Foundation of Heilongjiang Province,China(No.TD2021E005)。
文摘Lithium sulfur(Li-S)battery is a kind of burgeoning energy storage system with high energy density.However,the electrolyte-soluble intermediate lithium polysulfides(Li PSs)undergo notorious shuttle effect,which seriously hinders the commercialization of Li-S batteries.Herein,a unique VSe_(2)/V_(2)C heterostructure with local built-in electric field was rationally engineered from V_(2)C parent via a facile thermal selenization process.It exquisitely synergizes the strong affinity of V_(2)C with the effective electrocatalytic activity of VSe_(2).More importantly,the local built-in electric field at the heterointerface can sufficiently promote the electron/ion transport ability and eventually boost the conversion kinetics of sulfur species.The Li-S battery equipped with VSe_(2)/V_(2)C-CNTs-PP separator achieved an outstanding initial specific capacity of 1439.1 m A h g^(-1)with a high capacity retention of 73%after 100 cycles at0.1 C.More impressively,a wonderful capacity of 571.6 mA h g^(-1)was effectively maintained after 600cycles at 2 C with a capacity decay rate of 0.07%.Even under a sulfur loading of 4.8 mg cm^(-2),areal capacity still can be up to 5.6 m A h cm^(-2).In-situ Raman tests explicitly illustrate the effectiveness of VSe_(2)/V_(2)C-CNTs modifier in restricting Li PSs shuttle.Combined with density functional theory calculations,the underlying mechanism of VSe_(2)/V_(2)C heterostructure for remedying Li PSs shuttling and conversion kinetics was deciphered.The strategy of constructing VSe_(2)/V_(2)C heterocatalyst in this work proposes a universal protocol to design metal selenide-based separator modifier for Li-S battery.Besides,it opens an efficient avenue for the separator engineering of Li-S batteries.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 92165205, 11790311, 12004172, 11774152, 11604366, and 11634007)the National Key Research and Development Program of China (Grant Nos. 2018YFA0306800 and 2016YFA0300401)+1 种基金the Program of High-Level Entrepreneurial and Innovative Talents Introduction of Jiangsu Province, the Jiangsu Planned Projects for Postdoctoral Research Funds (Grant No. 2020Z172)the Natural Science Foundation of Jiangsu Province, China (Grant No. BK 20160397)。
文摘As a special order of electronic correlation induced by spatial modulation, the charge density wave(CDW) phenomena in condensed matters attract enormous research interests. Here, using scanning-tunneling microscopy in various temperatures, we discover a hidden incommensurate stripe-like CDW order besides the(■) CDW phase at low-temperature of 4 K in the epitaxial monolayer 1T-VSe_(2) film. Combining the variable-temperature angle-resolved photoemission spectroscopic(ARPES) measurements, we discover a two-step transition of an anisotropic CDW gap structure that consists of two parts △_(1) and△_(2). The gap part ?1 that closes around ~ 150 K is accompanied with the vanish of the(√7×√3) CDW phase. While another momentum-dependent gap part △_(2) can survive up to ~ 340 K, and is suggested to the result of the incommensurate CDW phase. This two-step transition with anisotropic gap opening and the resulted evolution in ARPES spectra are corroborated by our theoretical calculation based on a phenomenological form for the self-energy containing a two-gap structure △_(1) +△_(2), which suggests different forming mechanisms between the(√7×√3) and the incommensurate CDW phases. Our findings provide significant information and deep understandings on the CDW phases in monolayer 1T-VSe_(2) film as a two-dimensional(2D) material.
文摘本文采用简单的一步水热法合成了1T-VSe_(2)@rGO复合材料,在APC电解液环境下,并将其作为第二代可充电镁离子电池的正极材料。测试结果显示,1T-VSe_(2)@rGO复合正极材料在50 mA g^(-1)下具有263 mAh g^(-1)的高可逆容量,在50 mA g^(-1)下连续循环100次,可获得91%的初始电容的优秀循环寿命。因此,1T-VSe_(2)@rGO作为正极材料在镁离子和其他可充电电池中的应用打开了新的思路。
文摘In this work, the AFORS-HET digital simulation software was used to calculate the electrical characteristics of the cell/n-ZnO/i-ZnO/n-Zn (O, S)/p-CIGSe<sub>2</sub>/p + -MoSe<sub>2</sub>/Mo/SLG. When the thickness of the CIGSe<sub>2</sub> absorber is between 3.5 and 1.5 μm, the efficiency of the cell with an interfacial layer of MoSe<sub>2</sub> remains almost constant, with an efficiency of about 24.6%, higher to that of a conventional cell which is 23.4% for a thickness of 1.5 μm of CIGSe<sub>2</sub>. To achieve the expected results, the MoSe<sub>2</sub> layer must be very thin less than or equal to 30 nm. In addition, a Schottky barrier height greater than 0.45 eV severely affects the fill factor and the open circuit voltage of the solar cell with MoSe<sub>2</sub> interface layer.
文摘<span style="font-family:Verdana;">T</span><span style="font-family:Verdana;font-size:12px;">he T</span><span style="font-family:Verdana;font-size:12px;">i</span><span style="font-family:Verdana;font-size:12px;">Se</span><sub><span style="font-family:Verdana;font-size:12px;">2</span></sub><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">nanosheets</span><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">were</span><span style="font-family:Verdana;font-size:12px;"> prepared by means of ultrasound-assisted liquid </span><span style="font-family:Verdana;font-size:12px;">phase exfoliation (LPE)</span><span style="font-family:Verdana;font-size:12px;"> and the </span><span style="font-family:Verdana;font-size:12px;">nonlinear </span><span style="font-family:Verdana;font-size:12px;">saturable absorption</span><span style="font-family:Verdana;font-size:12px;"> properties</span><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">were experimentally</span><span style="font-family:Verdana;font-size:12px;"> investigated. The modulation depth, saturation intensity and nonsaturable absorbance</span><span style="font-family:Verdana;font-size:12px;"> of the prepared </span><span style="font-family:Verdana;font-size:12px;">1T-TiSe</span><sub><span style="font-family:Verdana;font-size:12px;">2</span></sub><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">SA </span><span style="font-family:Verdana;font-size:12px;">were</span><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">1</span><span style="font-family:Verdana;font-size:12px;">5.7</span><span style="font-family:Verdana;font-size:12px;">%,</span><span style="font-family:Verdana;font-size:12px;"> 1.28 M</span><span style="font-family:Verdana;font-size:12px;">W/cm</span><sup><span style="font-family:Verdana;font-size:12px;vertical-align:super;">2</span></sup><span style="font-family:Verdana;font-size:12px;"> and 8.</span><span style="font-family:Verdana;font-size:12px;">2</span><span style="font-family:Verdana;font-size:12px;">%, </span><span style="font-family:Verdana;font-size:12px;">respectively</span><span style="font-family:Verdana;font-size:12px;">. Taking advantage of the saturable absorption properties of </span><span style="font-family:Verdana;font-size:12px;">T</span><span style="font-family:Verdana;font-size:12px;">i</span><span style="font-family:Verdana;font-size:12px;">Se</span><sub><span style="font-family:Verdana;font-size:12px;">2</span></sub><span style="font-family:Verdana;font-size:12px;">-based SA, a passively Q-switched erbium-doped fiber (EDF) laser was</span><span style="font-family:Verdana;font-size:12px;"> systematically demonstrated</span><span style="font-family:Verdana;font-size:12px;">. The pulse repetition rates varied from 24.50 kHz up to 73.79 kHz with the increasing pump power. The obtained shortest pulse width was 1.31 </span><span style="font-family:Verdana;font-size:12px;">μ</span><span style="font-family:Verdana;font-size:12px;">s with pulse energy of 79.28 nJ. The </span><span style="font-family:Verdana;font-size:12px;">system presented merits of low-cost SA preparation, system compactness,</span><span style="font-family:Verdana;font-size:12px;"> superb stability and high competition.</span>
基金the National Natural Science Foundation of China(Nos.61904099,51871137,12174237 and 52002232).H.L.Y.is supported by Key Laboratory of Magnetic Molecules&Magnetic Information Materials Ministry of Education,Shanxi Normal University(No.MMMM-202004).
文摘Two-dimensional(2D)van der Waals(vdW)magnetic materials with reduced dimensionality often exhibit unexpected properties compared to their bulk counterparts.In particular,the mechanical flexibility of 2D structure,enhanced ferromagnetism at reduced layer thickness,as well as robust perpendicular magnetic anisotropy are quite appealing for constructing novel spintronic devices.The vdW vanadium diselenide(VSe_(2))is an attractive material whose bulk is paramagnetic while monolayer is ferromagnetic with a Curie temperature(Tc)above room temperature.To explore its possible device applications,a detailed investigation on the thickness-dependent magnetism and strain modulation behavior of VSe_(2)is highly demanded.In this article,the VSe_(2)nanoflakes were controllably prepared via chemical vapor deposition(CVD)method.The few-layer single VSe_(2)nanoflakes were found to exhibit magnetic domain structures at room temperature.Ambient magnetic force microscopy(MFM)phase images reveal a clear thickness-dependent magnetism and the MFM phase contrast is traceable for the nanoflakes of layer thickness below~6 nm.Moreover,applying strain is found efficient in modulating the magnetic moment and coercive field of 2D VSe_(2)at room temperature.These results are helpful for understanding the ferromagnetism of high temperature 2D magnets and for constructing novel straintronic devices or flexible spintronic devices.
基金the National Natural Science Foundation of China(Nos.U2004165,51702017,and 11974016)the Natural Science Foundation of Henan Province,China(No.202300410376)Research Grants Council of Hong Kong,China(No.GRF 152093/18E PolyU B-Q65N).
文摘There is an emerging need for high-sensitivity solar-blind deep ultraviolet(DUV)photodetectors with an ultra-fast response speed.Although nanoscale devices based on Ga_(2)O_(3)nanostructures have been developed,their practical applications are greatly limited by their slow response speed as well as low specific detectivity.Here,the successful fabrication of two-/three-dimensional(2D/3D)graphene(Gr)/PtSe2/β-Ga_(2)O_(3)Schottky junction devices for high-sensitivity solar-blind DUV photodetectors is demonstrated.Benefitting from the high-quality 2D/3D Schottky junction,the vertically stacked structure,and the superior-quality transparent graphene electrode for effective carrier collection,the photodetector is highly sensitive to DUV light illumination and achieves a high responsivity of 76.2 mA/W,a large on/off current ratio of~105,along with an ultra-high ultraviolet(UV)/visible rejection ratio of 1.8×104.More importantly,it has an ultra-fast response time of 12µs and a remarkable specific detectivity of~1013 Jones.Finally,an excellent DUV imaging capability has been identified based on the Gr/PtSe2/β-Ga_(2)O_(3)Schottky junction photodetector,demonstrating its great potential application in DUV imaging systems.
基金The authors acknowledge the insightful suggestions and comments from Dr. S. C. Zhang and N. N. Mao at Peking University. This work was supported by the National Natural Science Foundation of China (Nos. 51502167 and 21473110), and the fundamental Research Funds for the Central Universities (No. GK201502003), L. Z. and J. K. acknowledge the funding by the Center for Integrated Quantum Materials under NSF (No. DMR-1231319).
文摘The anisotropic two-dimensional (2D) layered material rhenium disulfide (ReSe2) has attracted considerable attention because of its unusual properties and promising applications in electronic and optoelectronic devices. However, because of its low lattice symmetry and interlayer decoupling, anisotropic growth and out-of-plane growth occur easily, yielding thick flakes, dendritic structure, or flower-like structure. In this stud34 we demonstrated a bottom-up method for the controlled and scalable synthesis of ReSe2 by van der Waals epitaxy. To achieve controllable growth, a micro-reactor with a confined reaction space was constructed by stacking two mica substrates in the chemical vapor deposition system. Within the confined reaction space, the nucleation density and growth rate of ReSe2 were significantly reduced, favoring the large-area synthesis of ReSe2 with a uniform monolayer thickness. The morphological evolution of ReSe2 with growth temperature indicated that the anisotropic growth was suppressed at a low growth temperature (〈600 ℃). Field-effect transistors employing the grown ReSe2 exhibited p-type conduction with a current ON/OFF ratio up to 10s and a hole carrier mobility of 0.98 cm^2/(V·s). Furthermore, the ReSe2 device exhibited an outstanding photoresponse to near-infrared light, with responsivity up to 8.4 and 5.1 A/W for 850- and 940-nm light, respectively. This work not only promotes the large-scale application of ReSe2 in high-performance electronic devices but also clarifies the growth mechanism of low-lattice symmetry 2D materials.
基金support from the National Natural Science Foundation of China(61835012,61722408,21771040,61574151,61574152)the Key Research Project of Frontier Sciences of Chinese Academy of Sciences(QYZDB-SSW-JSC016,QYZDB-SSW-JSC042)+1 种基金the National Key Research and Development Program of China(2017YFA0207303,2016YFA0203900)the 1000 Plan Program for Young Talents.
文摘Two-dimensional(2D)materials have attracted increasing attention for their outstanding structural and electrical properties.However,for mass-production of field effect transistors(FETs)and potential applications in integrated circuits,large-area and uniform 2D thin films with high mobility,large on-off ratio,and desired polarity are needed to synthesize firstly.Here,a transfer-free growth method for platinum diselenide(PtSe2)films has been developed.The PtSe2 films have been synthesized with various thicknesses in centimeter-sized scale.Typical FET made from a few layer PtSe2 show p-type unipolar,with a high field-effect hole mobility of 6.2 cm^(2) V^(−1) s^(−1) and an on-off ratio of 5×10^(3).The versatile semimetal-unipolar-ambipolar transition in synthesized PtSe2 films is also firstly observed as the thickness thinning.This work realizes the large-scale preparation of PtSe2 with prominent electrical properties and provides a new strategy for polarity's modulation.
文摘Orientation-controlled growth of two-dimensional(2D)transition metal dichalcogenides(TMDCs)may enable many new electronic and optical applications.However,previous studies reporting aligned growth of WSe2 usually yielded very small domain sizes.Herein,we introduced gold vapor into the chemical vapor deposition(CVD)process as a catalyst to assist the growth of WSe2 and successfully achieved highly aligned monolayer WSe2 triangular flakes grown on c-plane sapphire with large domain sizes(130μm)and fast growth rate(4.3μm·s^−1).When the aligned WSe2 domains merged together,a continuous monolayer WSe2 was formed with good uniformity.After transferring to Si/SiO2 substrates,field effect transistors were fabricated on the continuous monolayer WSe2,and an average mobility of 12 cm^2·V^−1·s−1 was achieved,demonstrating the good quality of the material.This report paves the way to study the effect of catalytic metal vapor in the CVD process of TMDCs and contributes a novel approach to realize the growth of aligned TMDC flakes.
基金This work was supported by the National Key R&D Program of China(2022YFB4400100 and 2021YFA0715600)the Leading-edge Technology Program of Jiangsu Natural Science Foundation(BK20202005)+4 种基金the National Natural Science Foundation of China(T2221003,61927808,61734003,61861166001,and 62204113)the Natural Science Foundation of Jiangsu Province(BK20220773)the Strategic Priority Research Program of Chinese Academy of Sciences(XDB30000000)Key Laboratory of Advanced Photonic and Electronic Materials,Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronicsthe Fundamental Research Funds for the Central Universities,China.
文摘Single-crystalline transition metal dichalcogenides(TMD)films are of potential application in future electronics and optoelectronics.In this work,a halide vapor phase epitaxy(HVPE)strategy was proposed and demonstrated for the epitaxy of molybdenum diselenide(MoSe_(2))single crystals,in which metal halide vapors were in-situ produced by the chlorination of molybdenum as sources for the TMD growth.Combined with the epitaxial sapphire substrate,unidirectional domain alignment was successfully achieved and monolayer single-crystal MoSe_(2) films have been demonstrated on a 2-inch wafer for the first time.A series of characterizations ranging from centimeter to nanometer scales have been implemented to demonstrate the high quality and uniformity of the MoSe_(2).This work provides a universal strategy for the growth of TMD single-crystal films.
文摘In the presence of molecular iodine, the reaction of alkenes with diselenides proceeds efficiently under air and at room temperature in mixed solvent MeCN/H2O, which affording β-hydroxy selenides with high regioselectivity and in good to excellent yields. This iodine-mediated vicinal difunctionalization of alkenes requires mild reaction conditions and is a simple procedure, which extends the synthetic application of molecular iodine in organic synthesis.