The low-temperature physical vapor deposition process of atomically thin two-dimensional transition metal dichalcogenide(2D TMD) has been gaining attention owing to the cost-effective production of diverse electrochem...The low-temperature physical vapor deposition process of atomically thin two-dimensional transition metal dichalcogenide(2D TMD) has been gaining attention owing to the cost-effective production of diverse electrochemical catalysts for hydrogen evolution reaction(HER) applications. We, herein, propose a simple route toward the cost-effective physical vapor deposition process of 2D WSe2 layered nanofilms as HER electrochemical catalysts using RF magnetron sputtering at room temperature(<27℃). By controlling the variable sputtering parameters, such as RF power and deposition time, the loading amount and electrochemical surface area(ECSA) of WSe2 films deposited on carbon paper can be carefully determined. The surface of the sputtered WSe2 films are partially oxidized, which may cause spherical-shaped particles. Regardless of the loading amount of WSe2, Tafel slopes of WSe2 electrodes in the HER test are narrowly distributed to be ~120–138 mV dec-1, which indicates the excellent reproducibility of intrinsic catalytic activity. By considering the trade-off between the loading amount and ECSA, the best HER performance is clearly observed in the 200 W-15 min sample with an overpotential of 220 mV at a current density of 10 mA cm-2. Such a simple sputtering method at low temperature can be easily expanded to other 2D TMD electrochemical catalysts, promising potentially practical electrocatalysts.展开更多
Entanglement is a defining feature of quantum physics with no classical analog. On the one hand, it is a powerful concept used in the fundamental study of quantum systems, many-body physics and even black hole physics...Entanglement is a defining feature of quantum physics with no classical analog. On the one hand, it is a powerful concept used in the fundamental study of quantum systems, many-body physics and even black hole physics. On the other hand, it is a key resource in quantum communication and information processing. Entanglement has been realized between photons[1], ions[2], spins[3], quantum dots[4] and even larger objects such as macroscopic diamonds[5]. Entanglement involving macroscopic objects is particularly intriguing and holds promise for novel quantum technologies. In a recent paper[6] published in Nature Physics, Srivastava and coworkers have unveiled an intriguing entanglement between collective and macroscopic vibration involving billions of atoms of the crystal (phonon) and a single optical excitation of a quantum dot (QD) in monolayer WSe2 (Fig. 1(a)). This is the first report on single photon entangled with phonon.展开更多
The van der Waals(vdW)heterostructures of bilayer transition metal dichalcogenide obtained by vertically stacking have drawn increasing attention for their enormous potential applications in semiconductors and insulat...The van der Waals(vdW)heterostructures of bilayer transition metal dichalcogenide obtained by vertically stacking have drawn increasing attention for their enormous potential applications in semiconductors and insulators.Here,by using the first-principles calculations and the phonon Boltzmann transport equation(BTE),we studied the phonon transport properties of WS2/WSe2 bilayer heterostructures(WS2/WSe2-BHs).The lattice thermal conductivity of the ideal WS2/WSe2-BHs crystals at room temperature(RT)was 62.98 W/mK,which was clearly lower than the average lattice thermal conductivity of WS2 and WSe2 single layers.Another interesting finding is that the optical branches below 4.73 THz and acoustic branches have powerful coupling,mainly dominating the lattice thermal conductivity.Further,we also noticed that the phonon mean free path(MFP)of the WS2/WSe2-BHs(233 nm)was remarkably attenuated by the free-standing monolayer WS2(526 nm)and WSe2(1720 nm),leading to a small significant size effect of the WS2/WSe2-BHs.Our results systematically demonstrate the low optical and acoustic phonon modes-dominated phonon thermal transport in heterostructures and give a few important guidelines for the synthesis of van der Waals heterostructures with excellent phonon transport properties.展开更多
Two-dimensional(2D)tungsten selenide(WSe_(2))is promising candidate material for future electronic applications,owing to its potential for ultimate device scaling.For improving the electronic performance of WSe_(2)-ba...Two-dimensional(2D)tungsten selenide(WSe_(2))is promising candidate material for future electronic applications,owing to its potential for ultimate device scaling.For improving the electronic performance of WSe_(2)-based field-effect transistors(FETs),the modification of surface properties is essential.In this study,the seamless structural phase transition in WSe_(2) lattice is achieved by soft oxygen plasma,regulating the electrical conductance of WSe_(2)-based FETs.We found that during the soft oxygen plasma treatment with optimal processing time,the generated oxygen ions can substitute some selenium atoms and thus locally modify the bond length,inducing 2H→1T phase transition in WSe_(2) with seamless interfaces.The mosaic structures have been proven to tailor the electronic structure and increase the hole carrier concentration inside WSe_(2),significantly increasing the channel conductance of WSe_(2) FETs.With the further increase of the oxygen plasma treatment time,the creation of more selenium vacancy defects leads to the electronic doping,resulting in the reduction of conductance.Benefiting from the hexagonal boron nitride(h-BN)encapsulation to interrupt the partial structural relaxation from 1T to 2H phase,our WSe_(2) FET exhibits high electronic stability with conductance of 6.8×10^(-4) S,which is about four orders of magnitude higher than 2H WSe_(2)(5.8×10^(-8) S).This study could further broaden the WSe_(2) FETs in applications for functionalization and integration in electronics.展开更多
Molybdenum and tungsten chalcogenides have attracted tremendous attention in energy storage and conversion due to their outstanding physicochemical and electrochemical properties.There are intensive studies on molybde...Molybdenum and tungsten chalcogenides have attracted tremendous attention in energy storage and conversion due to their outstanding physicochemical and electrochemical properties.There are intensive studies on molybdenum and tungsten chalcogenides for energy storage and conversion,however,there is no systematic review on the applications of WS2,Mo Se2and WSe2as anode materials for lithium-ion batteries(LIBs)and sodium-ion batteries(SIBs),except Mo S2.Considering the importance of these contents,it is extremely necessary to overview the recent development of novel layered WS2,Mo Se2and WSe2beyond Mo S2in energy storage.Here,we will systematically overview the recent progress of WS2,Mo Se2and WSe2as anode materials in LIBs and SIBs.This review will also discuss the opportunities,and perspectives of these materials in the energy storage fields.展开更多
基金supported by the Fundamental Research Program of the Korean Institute of Materials Science(Grant PNK6130)the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT,Ministry of Science and ICT)(No.2017R1C1B1005076)+1 种基金financially supported by the Ministry of Trade,Industry and Energy(MOTIE)Korea Institute for Advancement of Technology(KIAT)through the National Innovation Cluster R&D program(P0006704_Development of energy saving advanced parts)。
文摘The low-temperature physical vapor deposition process of atomically thin two-dimensional transition metal dichalcogenide(2D TMD) has been gaining attention owing to the cost-effective production of diverse electrochemical catalysts for hydrogen evolution reaction(HER) applications. We, herein, propose a simple route toward the cost-effective physical vapor deposition process of 2D WSe2 layered nanofilms as HER electrochemical catalysts using RF magnetron sputtering at room temperature(<27℃). By controlling the variable sputtering parameters, such as RF power and deposition time, the loading amount and electrochemical surface area(ECSA) of WSe2 films deposited on carbon paper can be carefully determined. The surface of the sputtered WSe2 films are partially oxidized, which may cause spherical-shaped particles. Regardless of the loading amount of WSe2, Tafel slopes of WSe2 electrodes in the HER test are narrowly distributed to be ~120–138 mV dec-1, which indicates the excellent reproducibility of intrinsic catalytic activity. By considering the trade-off between the loading amount and ECSA, the best HER performance is clearly observed in the 200 W-15 min sample with an overpotential of 220 mV at a current density of 10 mA cm-2. Such a simple sputtering method at low temperature can be easily expanded to other 2D TMD electrochemical catalysts, promising potentially practical electrocatalysts.
文摘Entanglement is a defining feature of quantum physics with no classical analog. On the one hand, it is a powerful concept used in the fundamental study of quantum systems, many-body physics and even black hole physics. On the other hand, it is a key resource in quantum communication and information processing. Entanglement has been realized between photons[1], ions[2], spins[3], quantum dots[4] and even larger objects such as macroscopic diamonds[5]. Entanglement involving macroscopic objects is particularly intriguing and holds promise for novel quantum technologies. In a recent paper[6] published in Nature Physics, Srivastava and coworkers have unveiled an intriguing entanglement between collective and macroscopic vibration involving billions of atoms of the crystal (phonon) and a single optical excitation of a quantum dot (QD) in monolayer WSe2 (Fig. 1(a)). This is the first report on single photon entangled with phonon.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51720105007,51806031,11602149,and GZ1257)the Fundamental Research Funds for the Central Universities,China(Grant Nos.DUT16RC(3)116 and DUT19RC(3)006)The computing resources from Supercomputer Center of Dalian University of Technology and ScGrid are greatly acknowledged。
文摘The van der Waals(vdW)heterostructures of bilayer transition metal dichalcogenide obtained by vertically stacking have drawn increasing attention for their enormous potential applications in semiconductors and insulators.Here,by using the first-principles calculations and the phonon Boltzmann transport equation(BTE),we studied the phonon transport properties of WS2/WSe2 bilayer heterostructures(WS2/WSe2-BHs).The lattice thermal conductivity of the ideal WS2/WSe2-BHs crystals at room temperature(RT)was 62.98 W/mK,which was clearly lower than the average lattice thermal conductivity of WS2 and WSe2 single layers.Another interesting finding is that the optical branches below 4.73 THz and acoustic branches have powerful coupling,mainly dominating the lattice thermal conductivity.Further,we also noticed that the phonon mean free path(MFP)of the WS2/WSe2-BHs(233 nm)was remarkably attenuated by the free-standing monolayer WS2(526 nm)and WSe2(1720 nm),leading to a small significant size effect of the WS2/WSe2-BHs.Our results systematically demonstrate the low optical and acoustic phonon modes-dominated phonon thermal transport in heterostructures and give a few important guidelines for the synthesis of van der Waals heterostructures with excellent phonon transport properties.
基金supported by the National Natural Science Foundation of China(No.11774278)the Fundamental Research Funds for Central Universities(No.2012jdgz04).
文摘Two-dimensional(2D)tungsten selenide(WSe_(2))is promising candidate material for future electronic applications,owing to its potential for ultimate device scaling.For improving the electronic performance of WSe_(2)-based field-effect transistors(FETs),the modification of surface properties is essential.In this study,the seamless structural phase transition in WSe_(2) lattice is achieved by soft oxygen plasma,regulating the electrical conductance of WSe_(2)-based FETs.We found that during the soft oxygen plasma treatment with optimal processing time,the generated oxygen ions can substitute some selenium atoms and thus locally modify the bond length,inducing 2H→1T phase transition in WSe_(2) with seamless interfaces.The mosaic structures have been proven to tailor the electronic structure and increase the hole carrier concentration inside WSe_(2),significantly increasing the channel conductance of WSe_(2) FETs.With the further increase of the oxygen plasma treatment time,the creation of more selenium vacancy defects leads to the electronic doping,resulting in the reduction of conductance.Benefiting from the hexagonal boron nitride(h-BN)encapsulation to interrupt the partial structural relaxation from 1T to 2H phase,our WSe_(2) FET exhibits high electronic stability with conductance of 6.8×10^(-4) S,which is about four orders of magnitude higher than 2H WSe_(2)(5.8×10^(-8) S).This study could further broaden the WSe_(2) FETs in applications for functionalization and integration in electronics.
基金supported by the National Natural Science Foundation of China (Grant No. 51302079)the Natural Science Foundation of Hunan Province (Grant No. 2017JJ1008)
文摘Molybdenum and tungsten chalcogenides have attracted tremendous attention in energy storage and conversion due to their outstanding physicochemical and electrochemical properties.There are intensive studies on molybdenum and tungsten chalcogenides for energy storage and conversion,however,there is no systematic review on the applications of WS2,Mo Se2and WSe2as anode materials for lithium-ion batteries(LIBs)and sodium-ion batteries(SIBs),except Mo S2.Considering the importance of these contents,it is extremely necessary to overview the recent development of novel layered WS2,Mo Se2and WSe2beyond Mo S2in energy storage.Here,we will systematically overview the recent progress of WS2,Mo Se2and WSe2as anode materials in LIBs and SIBs.This review will also discuss the opportunities,and perspectives of these materials in the energy storage fields.