Cyclops of zooplankton propagated excessively in eutrophic water body and could not be effectively inactivated by the conventional disinfections process like chlorination due to its stronger resistance to oxidation. I...Cyclops of zooplankton propagated excessively in eutrophic water body and could not be effectively inactivated by the conventional disinfections process like chlorination due to its stronger resistance to oxidation. In this paper, a full-scale study of chlorine dioxide preoxidation cooperating with routine clarification process for Cyclops removal was conducted in a waterworks. The experimental results were compared with that of the existing prechlorination process in several aspects: including the Cyclops removal efficiencies of water samples taken from the outlets of sedimentation tank and sand filter and the security of drinking water and so on. The results showed that chlorine dioxide might be more effective to inactivate Cyclops than chlorine and Cyclops could be thoroughly removed from water by pre-dosing chlorine dioxide process. The GC-MS examination and Ames test further showed that the sort and amount of organic substance in the treated water by chlorine dioxide preoxidation were evidently less than that of prechlorination and the mutagenicity of drinking water treated by pre-dosing chlorine dioxide was substantially reduced compared with prechlorination.展开更多
Chironomid larvae propagated excessively in eutrophic water body and could not be effectively inactivated by the conventional disinfection process like chlorination due to its stronger resistance to oxidation. In this...Chironomid larvae propagated excessively in eutrophic water body and could not be effectively inactivated by the conventional disinfection process like chlorination due to its stronger resistance to oxidation. In this paper, a pilot-scale study of chlorine dioxide preoxidation cooperating with routine clarification process for Chironomid larvae removal was conducted in Shenzhen Waterworks in Guangdong Province, China. The experimental results were compared with that of the existing prechlorination process in several aspects, including the Chironomid larvae removal efficiencies of water samples taken from the outlets of sedimentation tank, sand filter, the security of drinking water and so on. The results showed that chlorine dioxide might be more effective to inactivate Chironomid larvae than chlorine and Chironomid larvae could be thoroughly removed from water by pre-dosing chlorine dioxide process. The GC-MS examination and Ames test further showed that the sort and amount of organic substance in the treated water by chlorine dioxide preoxidation were evidently less than that ofprechlorination and the mutagenicity of drinking water treated by pre-dosing chlorine dioxide was substantially reduced compared with prechlorination.展开更多
Chironomid larvae propagate prolifically in eutrophic water body and they cannot be exterminated by conventional disinfection process. The inactivation effects of chlorine and chlorine dioxide on Chironomid larvae wer...Chironomid larvae propagate prolifically in eutrophic water body and they cannot be exterminated by conventional disinfection process. The inactivation effects of chlorine and chlorine dioxide on Chironomid larvae were investigated and some bourdary values in practice were determined under .conditions of various oxidaat dosage, organic precursor concentmtion and pH value. In addition, removal effect of different pre-oxidation cambined with coagulation process on Chironomid larvae in raw water was evaluated. It was found that chlorine dioxide possessed better inactivation effect than chlorine. Complete inactivation of Chironomid larvae in raw water was resulted by 1.5 mg/L of chlorine dioxide with 30 min of contact 'time. Additionally, the organic precursor concentration, pH value had little influence on the inactivation effect. The coagulation jar test showed that Chironomid larvae in the raw water could be completely removed by chlorine dioxide pre-oxidation in combination with the coagulation process at chlorine dioxide dosage of 0.8 mg/L.展开更多
Chlorine dioxide composite disinfectant generator that produces a mixture of the oxidant gases comprising chlorine dioxide, chlorine, ozone and hydrogen peroxide through electrolyzing salt,is widely utilized in China ...Chlorine dioxide composite disinfectant generator that produces a mixture of the oxidant gases comprising chlorine dioxide, chlorine, ozone and hydrogen peroxide through electrolyzing salt,is widely utilized in China presently.The experiments in the paper focused on the removal of benzene homologous compounds such as styrene, methyl and dimethyl benzene. The results indicated that pH value was the most crucial factor to influence the treatment effects while reaction time and input way were considered as the importance. The removal rate for benzene could reach 60% when above 80% for methyl, and 100% for styrene and dimethyl. The variation mechanisms between chlorine dioxide,chlorite and chloride which determine the drinking water quality also discussed.展开更多
Mesocyclops Leukarti of zooplankton propagates excessively in eutrophic water body and it can not be effectively inactivated by the conventional process in drinking waterworks for its special surface structure. In thi...Mesocyclops Leukarti of zooplankton propagates excessively in eutrophic water body and it can not be effectively inactivated by the conventional process in drinking waterworks for its special surface structure. In this paper, a study of removal efficiency on Mesocyclops Leukarti with chlorine dioxide in a drinking waterworks was performed. Bench scale results showed that chlorine dioxide is more effective against Mesocyclops Leukarti. And Mesocyclops Leukarti could be effectively removed from water by 1.0 mg/L chlorine dioxide preoxidation cooperated with the conventional process during the full scale study. The chlorite, by.product of prechiorine dioxide, was constant at 0.45 mg/L after filtration, which was lower than the critical value of the USEPA. GC-MS examination and Ames test showed that the quantity of organics and the mutngenicity in the water treated by chlorine dioxide is obviously less than that of prechlorination.展开更多
Helicobacter pylori (H. pylori) is bacteria considered to be present in half of the population and it is a public health problem worldwide. Most patients infected with H. pylori show no clinical symptoms;nonetheless, ...Helicobacter pylori (H. pylori) is bacteria considered to be present in half of the population and it is a public health problem worldwide. Most patients infected with H. pylori show no clinical symptoms;nonetheless, approximately 10% to 20% of these patients will develop peptic ulcers and 1% will develop gastric cancer. The International Agency for Research on Cancer has classified H. pylori as a Group 1 carcinogen, recognized as the only bacteria capable of producing cancer. Samples of drinking water (n = 44) from aqueducts with chlorination treatment in selected areas with high prevalence of gastric cancer were analyzed in Costa Rica. Samples of drinking water from Panamá (n = 44) from aqueducts supplying untreated water for human consumption in the province of Chiriquí were also analyzed. The molecular marker of H. pylori, glmM, was used, and to optimize the Real Time PCR (qPCR) technique, annealing temperature, concentration of primers and probe were standardized;also, by analyzing different standard curves, the best reaction conditions that allowed detecting and quantifying the gene were determined. The LightCycler® 480 II (LC480II) equipment from Roche Diagnostics GmbH was used, as well as the Absolute Quantification Analysis by means of the Second Derivative Maximum Method. In the case of the samples from Costa Rica, it was determined that 79.5% were positive for H. pylori;removing outlier high average, quantification of bacteria was determined in 3.6 × 103 copies/100 mL. For Panamá it was determined that 86% of the samples were found positive for the presence of H. pylori;removing outlier high average quantification of bacteria was determined at 3.3 × 102 copies/100 mL. The difference in values between the aqueducts in both countries revealed an environmental distribution of the bacteria of epidemiological interest in each case.展开更多
Seasonal variability in source water can lead to challenges for drinking water providers related to operational optimization and process control in treatment facilities. The objective of this study is to investigate s...Seasonal variability in source water can lead to challenges for drinking water providers related to operational optimization and process control in treatment facilities. The objective of this study is to investigate seasonal variability of water quality in municipal small water systems (〈 3000 residents) supplied by surface waters. Residual chlorine and trihalomethanes (THM) were measured over seven years (2003-2009). Comparisons are made within each system over time, as well as between systems according to the type of their treatment technologies. THM concentrations are generally higher in the summer and autumn. The seasonal variability was generally more pronounced in systems using chlorination plus additional treatment. Chloroform, total THM (TTHM) and residual chlorine concentrations were generally lower in systems using chlorination plus additional treatment. Conversely, brominated THM concentrations were higher in systems using additional treatment. Residual chlorine was highest in the winter and lowest in the spring and summer. Seasonal variations were most pronounced for residual chlorine in systems with additional treatment. There was generally poor correlation between THM concentrations and concentrations of residual chlorine. Further study with these data will be beneficial in finding determinants and indicators for both quantity and variability of disinfection byproducts and other water quality parameters.展开更多
Chlorine-based disinfection is ubiquitous in conventional drinking water treatment (DWT) and serves to mitigate threats of acute microbial disease caused by pathogens that may be present in source water. An important ...Chlorine-based disinfection is ubiquitous in conventional drinking water treatment (DWT) and serves to mitigate threats of acute microbial disease caused by pathogens that may be present in source water. An important index of disinfection efficiency is the free chlorine residual (FCR), a regulated disinfection parameter in the US that indirectly measures disinfectant power for prevention of microbial recontamination during DWT and distribution. This work demonstrates how machine learning (ML) can be implemented to improve FCR forecasting when supplied with water quality data from a real, full-scale chlorine disinfection system in Georgia, USA. More precisely, a gradient-boosting ML method (CatBoost) was developed from a full year of DWT plant-generated chlorine disinfection data, including water quality parameters (e.g., temperature, turbidity, pH) and operational process data (e.g., flowrates), to predict FCR. Four gradient-boosting models were implemented, with the highest performance achieving a coefficient of determination, R2, of 0.937. Values that provide explanations using Shapley’s additive method were used to interpret the model’s results, uncovering that standard DWT operating parameters, although non-intuitive and theoretically non-causal, vastly improved prediction performance. These results provide a base case for data-driven DWT disinfection supervision and suggest process monitoring methods to provide better information to plant operators for implementation of safe chlorine dosing to maintain optimum FCR.展开更多
文摘Cyclops of zooplankton propagated excessively in eutrophic water body and could not be effectively inactivated by the conventional disinfections process like chlorination due to its stronger resistance to oxidation. In this paper, a full-scale study of chlorine dioxide preoxidation cooperating with routine clarification process for Cyclops removal was conducted in a waterworks. The experimental results were compared with that of the existing prechlorination process in several aspects: including the Cyclops removal efficiencies of water samples taken from the outlets of sedimentation tank and sand filter and the security of drinking water and so on. The results showed that chlorine dioxide might be more effective to inactivate Cyclops than chlorine and Cyclops could be thoroughly removed from water by pre-dosing chlorine dioxide process. The GC-MS examination and Ames test further showed that the sort and amount of organic substance in the treated water by chlorine dioxide preoxidation were evidently less than that of prechlorination and the mutagenicity of drinking water treated by pre-dosing chlorine dioxide was substantially reduced compared with prechlorination.
文摘Chironomid larvae propagated excessively in eutrophic water body and could not be effectively inactivated by the conventional disinfection process like chlorination due to its stronger resistance to oxidation. In this paper, a pilot-scale study of chlorine dioxide preoxidation cooperating with routine clarification process for Chironomid larvae removal was conducted in Shenzhen Waterworks in Guangdong Province, China. The experimental results were compared with that of the existing prechlorination process in several aspects, including the Chironomid larvae removal efficiencies of water samples taken from the outlets of sedimentation tank, sand filter, the security of drinking water and so on. The results showed that chlorine dioxide might be more effective to inactivate Chironomid larvae than chlorine and Chironomid larvae could be thoroughly removed from water by pre-dosing chlorine dioxide process. The GC-MS examination and Ames test further showed that the sort and amount of organic substance in the treated water by chlorine dioxide preoxidation were evidently less than that ofprechlorination and the mutagenicity of drinking water treated by pre-dosing chlorine dioxide was substantially reduced compared with prechlorination.
基金The National Natural Science Foundation of China(NO.503780262)Supporting Certificate of China Postdoctoral Science Foundation(No.20070420882)Heilongjiang Postdoctorial Financial Assistance(No.LBH-Z06115)
文摘Chironomid larvae propagate prolifically in eutrophic water body and they cannot be exterminated by conventional disinfection process. The inactivation effects of chlorine and chlorine dioxide on Chironomid larvae were investigated and some bourdary values in practice were determined under .conditions of various oxidaat dosage, organic precursor concentmtion and pH value. In addition, removal effect of different pre-oxidation cambined with coagulation process on Chironomid larvae in raw water was evaluated. It was found that chlorine dioxide possessed better inactivation effect than chlorine. Complete inactivation of Chironomid larvae in raw water was resulted by 1.5 mg/L of chlorine dioxide with 30 min of contact 'time. Additionally, the organic precursor concentration, pH value had little influence on the inactivation effect. The coagulation jar test showed that Chironomid larvae in the raw water could be completely removed by chlorine dioxide pre-oxidation in combination with the coagulation process at chlorine dioxide dosage of 0.8 mg/L.
文摘Chlorine dioxide composite disinfectant generator that produces a mixture of the oxidant gases comprising chlorine dioxide, chlorine, ozone and hydrogen peroxide through electrolyzing salt,is widely utilized in China presently.The experiments in the paper focused on the removal of benzene homologous compounds such as styrene, methyl and dimethyl benzene. The results indicated that pH value was the most crucial factor to influence the treatment effects while reaction time and input way were considered as the importance. The removal rate for benzene could reach 60% when above 80% for methyl, and 100% for styrene and dimethyl. The variation mechanisms between chlorine dioxide,chlorite and chloride which determine the drinking water quality also discussed.
基金Supported by Nature Science Foundation of Heilongjiang Province ( No. E200510) and Education Affliction Program of HeilongjiangProvince (No.10551093)
文摘Mesocyclops Leukarti of zooplankton propagates excessively in eutrophic water body and it can not be effectively inactivated by the conventional process in drinking waterworks for its special surface structure. In this paper, a study of removal efficiency on Mesocyclops Leukarti with chlorine dioxide in a drinking waterworks was performed. Bench scale results showed that chlorine dioxide is more effective against Mesocyclops Leukarti. And Mesocyclops Leukarti could be effectively removed from water by 1.0 mg/L chlorine dioxide preoxidation cooperated with the conventional process during the full scale study. The chlorite, by.product of prechiorine dioxide, was constant at 0.45 mg/L after filtration, which was lower than the critical value of the USEPA. GC-MS examination and Ames test showed that the quantity of organics and the mutngenicity in the water treated by chlorine dioxide is obviously less than that of prechlorination.
文摘Helicobacter pylori (H. pylori) is bacteria considered to be present in half of the population and it is a public health problem worldwide. Most patients infected with H. pylori show no clinical symptoms;nonetheless, approximately 10% to 20% of these patients will develop peptic ulcers and 1% will develop gastric cancer. The International Agency for Research on Cancer has classified H. pylori as a Group 1 carcinogen, recognized as the only bacteria capable of producing cancer. Samples of drinking water (n = 44) from aqueducts with chlorination treatment in selected areas with high prevalence of gastric cancer were analyzed in Costa Rica. Samples of drinking water from Panamá (n = 44) from aqueducts supplying untreated water for human consumption in the province of Chiriquí were also analyzed. The molecular marker of H. pylori, glmM, was used, and to optimize the Real Time PCR (qPCR) technique, annealing temperature, concentration of primers and probe were standardized;also, by analyzing different standard curves, the best reaction conditions that allowed detecting and quantifying the gene were determined. The LightCycler® 480 II (LC480II) equipment from Roche Diagnostics GmbH was used, as well as the Absolute Quantification Analysis by means of the Second Derivative Maximum Method. In the case of the samples from Costa Rica, it was determined that 79.5% were positive for H. pylori;removing outlier high average, quantification of bacteria was determined in 3.6 × 103 copies/100 mL. For Panamá it was determined that 86% of the samples were found positive for the presence of H. pylori;removing outlier high average quantification of bacteria was determined at 3.3 × 102 copies/100 mL. The difference in values between the aqueducts in both countries revealed an environmental distribution of the bacteria of epidemiological interest in each case.
文摘Seasonal variability in source water can lead to challenges for drinking water providers related to operational optimization and process control in treatment facilities. The objective of this study is to investigate seasonal variability of water quality in municipal small water systems (〈 3000 residents) supplied by surface waters. Residual chlorine and trihalomethanes (THM) were measured over seven years (2003-2009). Comparisons are made within each system over time, as well as between systems according to the type of their treatment technologies. THM concentrations are generally higher in the summer and autumn. The seasonal variability was generally more pronounced in systems using chlorination plus additional treatment. Chloroform, total THM (TTHM) and residual chlorine concentrations were generally lower in systems using chlorination plus additional treatment. Conversely, brominated THM concentrations were higher in systems using additional treatment. Residual chlorine was highest in the winter and lowest in the spring and summer. Seasonal variations were most pronounced for residual chlorine in systems with additional treatment. There was generally poor correlation between THM concentrations and concentrations of residual chlorine. Further study with these data will be beneficial in finding determinants and indicators for both quantity and variability of disinfection byproducts and other water quality parameters.
基金supported by:US Department of Agriculture’s National Institute of Food and Agriculture,Agriculture and Food Research Initiative,Water for Food Production Systems(No.2018-68011-28371)National Science Foundation(USA)(Nos.1936928,2112533)+1 种基金US Department of Agriculture’National Institute of Food and Agriculture(No.2020-67021-31526)US Environmental Protection Agency(No.840080010).
文摘Chlorine-based disinfection is ubiquitous in conventional drinking water treatment (DWT) and serves to mitigate threats of acute microbial disease caused by pathogens that may be present in source water. An important index of disinfection efficiency is the free chlorine residual (FCR), a regulated disinfection parameter in the US that indirectly measures disinfectant power for prevention of microbial recontamination during DWT and distribution. This work demonstrates how machine learning (ML) can be implemented to improve FCR forecasting when supplied with water quality data from a real, full-scale chlorine disinfection system in Georgia, USA. More precisely, a gradient-boosting ML method (CatBoost) was developed from a full year of DWT plant-generated chlorine disinfection data, including water quality parameters (e.g., temperature, turbidity, pH) and operational process data (e.g., flowrates), to predict FCR. Four gradient-boosting models were implemented, with the highest performance achieving a coefficient of determination, R2, of 0.937. Values that provide explanations using Shapley’s additive method were used to interpret the model’s results, uncovering that standard DWT operating parameters, although non-intuitive and theoretically non-causal, vastly improved prediction performance. These results provide a base case for data-driven DWT disinfection supervision and suggest process monitoring methods to provide better information to plant operators for implementation of safe chlorine dosing to maintain optimum FCR.