Identifying critical nodes or sets in large-scale networks is a fundamental scientific problem and one of the key research directions in the fields of data mining and network science when implementing network attacks,...Identifying critical nodes or sets in large-scale networks is a fundamental scientific problem and one of the key research directions in the fields of data mining and network science when implementing network attacks, defense, repair and control.Traditional methods usually begin from the centrality, node location or the impact on the largest connected component after node destruction, mainly based on the network structure.However, these algorithms do not consider network state changes.We applied a model that combines a random connectivity matrix and minimal low-dimensional structures to represent network connectivity.By using mean field theory and information entropy to calculate node activity,we calculated the overlap between the random parts and fixed low-dimensional parts to quantify the influence of node impact on network state changes and ranked them by importance.We applied this algorithm and the proposed importance algorithm to the overall analysis and stratified analysis of the C.elegans neural network.We observed a change in the critical entropy of the network state and by utilizing the proposed method we can calculate the nodes that indirectly affect muscle cells through neural layers.展开更多
Soil aggregate is the basic structural unit of soil,which is the foundation for supporting ecosystem functions,while its composition and stability is significantly affected by the external environment.This study was c...Soil aggregate is the basic structural unit of soil,which is the foundation for supporting ecosystem functions,while its composition and stability is significantly affected by the external environment.This study was conducted to explore the effect of external environment(wetting-drying cycles and acidic conditions)on the soil aggregate distribution and stability and identify the key soil physicochemical factors that affect the soil aggregate stability.The yellow‒brown soil from the Three Gorges Reservoir area(TGRA)was used,and 8 wetting-drying conditions(0,1,2,3,4,5,10 and 15 cycles)were simulated under 4 acidic conditions(pH=3,4,5 and 7).The particle size distribution and soil aggregate stability were determined by wet sieving method,the contribution of environmental factors(acid condition,wetting-drying cycle and their combined action)to the soil aggregate stability was clarified and the key soil physicochemical factors that affect the soil aggregate stability under wetting-drying cycles and acidic conditions were determined by using the Pearson’s correlation analysis,Partial least squares path modeling(PLS‒PM)and multiple linear regression analysis.The results indicate that wetting-drying cycles and acidic conditions have significant effects on the stability of soil aggregates,the soil aggregate stability gradually decreases with increasing number of wetting-drying cycles and it obviously decreases with the increase of acidity.Moreover,the combination of wetting-drying cycles and acidic conditions aggravate the reduction in the soil aggregate stability.The wetting-drying cycles,acidic conditions and their combined effect imposes significant impact on the soil aggregate stability,and the wetting-drying cycles exert the greatest influence.The soil aggregate stability is significantly correlated with the pH,Ca^(2+),Mg^(2+),maximum disintegration index(MDI)and soil bulk density(SBD).The PLS‒PM and multiple linear regression analysis further reveal that the soil aggregate stability is primarily influenced by SBD,Ca^(2+),and MDI.These results offer a scientific basis for understanding the soil aggregate breakdown mechanism and are helpful for clarifying the coupled effect of wetting-drying cycles and acid rain on terrestrial ecosystems in the TGRA.展开更多
Although disintegrated dolomite,widely distributed across the globe,has conventionally been a focus of research in underground engineering,the issue of slope stability issues in disintegrated dolomite strata is gainin...Although disintegrated dolomite,widely distributed across the globe,has conventionally been a focus of research in underground engineering,the issue of slope stability issues in disintegrated dolomite strata is gaining increasing prominence.This is primarily due to their unique properties,including low strength and loose structure.Current methods for evaluating slope stability,such as basic quality(BQ)and slope stability probability classification(SSPC),do not adequately account for the poor integrity and structural fragmentation characteristic of disintegrated dolomite.To address this challenge,an analysis of the applicability of the limit equilibrium method(LEM),BQ,and SSPC methods was conducted on eight disintegrated dolomite slopes located in Baoshan,Southwest China.However,conflicting results were obtained.Therefore,this paper introduces a novel method,SMRDDS,to provide rapid and accurate assessment of disintegrated dolomite slope stability.This method incorporates parameters such as disintegrated grade,joint state,groundwater conditions,and excavation methods.The findings reveal that six slopes exhibit stability,while two are considered partially unstable.Notably,the proposed method demonstrates a closer match with the actual conditions and is more time-efficient compared with the BQ and SSPC methods.However,due to the limited research on disintegrated dolomite slopes,the results of the SMRDDS method tend to be conservative as a safety precaution.In conclusion,the SMRDDS method can quickly evaluate the current situation of disintegrated dolomite slopes in the field.This contributes significantly to disaster risk reduction for disintegrated dolomite slopes.展开更多
In gas injection refining processes,wide dispersion of small bubbles in the bath is indispensable for high refining efficiency.Eccentric mechanical stirring with unidirectional impeller rotation was tested using a wat...In gas injection refining processes,wide dispersion of small bubbles in the bath is indispensable for high refining efficiency.Eccentric mechanical stirring with unidirectional impeller rotation was tested using a water model for pursuing better bubble disintegration and dispersion.Effects of various factors on bubble disintegration and dispersion were investigated.These factors were stirring mode,eccentricity and rotation speed,nozzle structure,nozzle immersion depth,and gas flow rate.Gas injection from a nozzle at the end of the impeller shaft and from an immersed lance was studied.Under eccentric stirring,a vortex was formed away from the shaft.Small bubbles were produced in the strong turbulence or high shear stress field near the rotating impeller and moved in the direction to the vortex keeping up with the macroscopic flow induced by the mechanical stirring.Thus small bubbles could disperse widely in the bath under eccentric stirring with unidirectional rotation.展开更多
Ahn To develop a high resolution HPLC method for the determination of ondansetron in human plasma and to study the pharmacokinetics of ondansetron in orally disintegrating tablets. Methods HPLC determination involved ...Ahn To develop a high resolution HPLC method for the determination of ondansetron in human plasma and to study the pharmacokinetics of ondansetron in orally disintegrating tablets. Methods HPLC determination involved liquid-liquid extraction, separation on a CN column and ultraviolet detection at 310 ran with granisetron as an internal standard. Pharmacokinetics and bioequivalence of ondansetron in orally disintegrating tablets by direct compression and conventional 8 mg tablets were evaluated and compared in 20 healthy human male volunteers after a single oral dose in a randomized cross-over study. Results The limit of quantification was 0.25 ng· mL^-1. The recovery was about 85 % or over for ondan setron and about 90% for internal standard. Linearity was good within the concentration range of 0.5 - 50 ng·mL^-1 with r^2 ranging from 0.997 1 to 0.999 9. Intra- and inter-assay coefficients of variation ranged from 1.78% to 2.38% and 3.88% -5.19%, respectively. Accuracies for spiked concentrations of 2.0, 10.0, and 30.0 ng·mL^-1 were 104.7% ±4.4%, 102.2% ± 1.1%, and99.51% ±2.34%, respectively. Pharmacokinetic parameters of AUCo-t, AUCo-∞ , Cmax, Tmax, and T1/2 were 230.2 ± 78.0 ng·h·L^-1 , 265.2± 101.5 ng·h·mL^-1, 35.67 ± 8.94 ng·mL^-l, 1.51 ±0.79 h, and 5.00± 1.41 h for orally disintegrating tablets, respectively. The analysis of variance did not show any significant difference between orally disintegrating tablets and conventional tablets, and 90% confidence intervals fell within the acceptable range for bioequivalence. Conclusion High resolution HPLC method has been set up and applied in pharmacokinetic evaluation of ondansetron in orally disintegrating tablets.展开更多
Aim The aim of the present study was to prepare tablets which can rapidlydisintegrate in saliva, containing active ingredient in high dose (37.5% W/W). Methods Rapidlydisintegrating tablets containing rotundine were p...Aim The aim of the present study was to prepare tablets which can rapidlydisintegrate in saliva, containing active ingredient in high dose (37.5% W/W). Methods Rapidlydisintegrating tablets containing rotundine were prepared by direct compression, wet granulation andmoulding, respectively . Different disintegrants and excipients were decided by single factor test.The typical disintegration time measurement and a new method of wetting time measuring wereintroduced for assessing rapidly disintegrating tablets. Results The tablets (80 mg) prepared bydirect compression have the crushing strength of 4.0 kg ?mm^(-2) and rapidly disintegratewithin 15 s in the saliva of healthy volunteers; the tablets prepared by wet granulation also havesufficient strength, a little longer but acceptable disintegration time (within 25 s in saliva) ;and the tablets obtained by moulding show disintegration within 40 s in saliva but low strength (2kg·mm^(-2)) . Disintegration time profiles of tablets are similar to those of wetting time, and thedisintegration and wetting times in vitro are similar to the disintegration time in vivo, thelatter having higher correlation with that in oral cavity. Conclusion The rapidly disintegratingtablets can be prepared by using these three techniques and excipients. Both in vitro disintegrationtime and wetting time are necessary indexes for judgment of in vitro disintegration profile.展开更多
Objective:An attempt was made to study the use of papaya pulp powder as a disintegrant in tablet formulations. The objective of the present work is to identify a natural binding and disintegrating agent for formulatin...Objective:An attempt was made to study the use of papaya pulp powder as a disintegrant in tablet formulations. The objective of the present work is to identify a natural binding and disintegrating agent for formulating tablets and to study the effect of disintegrating agents and binding agents on the dissolution of the formulation containing paracetamol.Methods:Papaya pulp powder is obtained from unripe papaya fruit.The fruit was screened for its physical and chemical characteristics and used in tablet formulations.In order to find out the percentage that could be used to formulate a product containing good disintegrating and dissolution characteristics, several formulations(Paracetamol) with different concentrations of 8%,10%,12%,15%,20%,25%& 30%were prepared.As a comparison,an already established disintegrant,sodium starchgylcolate was selected and several formulations containing similar concentrations,were also prepared.The invitro evaluation of the formulations were undertaken,and the results compared.In the present study preformulation studies on the purity, development of calibration curve of the drug and the compatibility between the drug and excepients were carried out.The fruits were cut into small pieces,grated,dried and powdered,passed through different sieves and made into fine powder.Fine powder of papaya was mixed with required amount of drug and sodium starchgylcolate individually in different concentrations along with other additives & binding agents.The dried granules were compressed into tablets and all the formulated dosage forms of paracetamol tablets were subjected to quality control tests like hardness disintegration and dissolution.Results:From the results it was observed that formulations S1 and P7 containing 8%of sodium starchgylcolate and 30%of papaya pulp powder showed good disintegration and dissolution characteristics.Conclusion:Since the tablet formulation P7 containing 30%of papaya pulp powder shows good disintegration and dissolution characteristics and also falls with in the limits of other tablet evaluation parameter,it justifies the possible use of papaya pulp powder as a disintegrant in tablet formulation.The percentage of papaya pulp powder to be used could depend on the nature of the formulation and other excepients used along with it.展开更多
Size and quantity of fractured zone and non-fractured zone are controlled by cracks contained in deep rock masses. Zonal disintegration mechanism is strongly dependent on the interaction among cracks. The strong inter...Size and quantity of fractured zone and non-fractured zone are controlled by cracks contained in deep rock masses. Zonal disintegration mechanism is strongly dependent on the interaction among cracks. The strong interaction among cracks is investigated using stress superposition principle and the Chebyshev polynomials expansion of the pseudo-traction. It is found from numerical results that crack nucleation, growth and coalescence lead to failure of deep crack- weakened rock masses. The stress redistribution around the surrounding rock mass induced by unloading excavation is studied. The effect of the excavation time on nucleation, growth, interaction and coalescence of cracks was analyzed. Moreover, the influence of the excavation time on the size and quantity of fractured zone and non-fractured zone was given. When the excavation time is short, zonal disintegration phenomenon may occur in deep rock masses. It is shown from numerical results that the size and quantity of fractured zone increase with decreasing excavation time, and the size and quantity of fractured zone increase with the increasing value of in-situ geostress.展开更多
The disintegration of granite residual soil is especially affected by variations in physical and chemical properties. Serious geologic hazards or engineering problems are closely related to the disintegration of grani...The disintegration of granite residual soil is especially affected by variations in physical and chemical properties. Serious geologic hazards or engineering problems are closely related to the disintegration of granite residual soil in certain areas. Research on the mechanical properties and controlling mechanisms of disintegration has become a hot issue in practical engineering. In this paper, the disintegration characteristics of improved granite residual soil are studied by using a wet and dry cycle disintegration instrument, and the improvement mechanism is analyzed. The results show that the disintegration amounts and disintegration ratios of soil samples treated with different curing agents are obviously different. The disintegration process of improved granite residual soil can be roughly divided into 5 stages:the forcible water intrusion stage, microcrack and fissure development stage, curing and strengthening stage, stable stage, and sudden disintegration stage. The disintegration of granite residual soil is caused by the weakening of the cementation between soil particles under the action of water. When the disintegration force is greater than the anti-disintegration force of soil, the soil will disintegrate. Cement and lime mainly rely on ion exchange agglomeration, the inclusion effect of curing agents on soil particles, the hard coagulation reaction and carbonation to strengthen granite residual soil. Kaolinite mainly depends on the reversibility of its own cementation to improve and strengthen granite residual soil. The reversibility of kaolinite cementation is verified by investigating pure kaolinite with a tensile, soaking, drying and tensile test cycle. Research on the disintegration characteristics and disintegration mechanism of improved granite residual soil is of certain reference value for soil modification.展开更多
The mechanism of the zonal disintegration phenomenon(ZDP) was realized based on the analysis of the stressedstrained state of the rock mass in the vicinity of the maximum stress zone, which resides in the creep instab...The mechanism of the zonal disintegration phenomenon(ZDP) was realized based on the analysis of the stressedstrained state of the rock mass in the vicinity of the maximum stress zone, which resides in the creep instability failure of rock mass due to the development of a plastic zone and transfer of the maximum stress zone within the rock mass.Some characteristic parameters of the ZDP are discussed theoretically.In first instance, the analytical critical depth condition for the occurrence of ZDP was obtained, which depends on the characteristics and stress concentration coefficient of the rock mass.Secondly, based on creep theory, the expression of the outer radius of the undisturbed zones in the deep rock mass was obtained with the use of an improved Burgers rheological model, which indicated that the radius depends on the characteristics of the rock mass and the depth of excavation and increases quasi-linearly with the rise of creep compliance of the rock mass.Finally, the formula for the distance of the most remote fissured zone away from the working periphery was derived, which increases logarithmically with the increase in the ratio of the in-situ stress and ultimate strength of rock mass.The distances between fissured zones are discussed in qualitative terms.展开更多
Rock masses without pre-existing macrocracks can usually be considered as granular materials with only microcracks.During the excavation of the tunnels,microcracks may nucleate,grow and propagate through the rock matr...Rock masses without pre-existing macrocracks can usually be considered as granular materials with only microcracks.During the excavation of the tunnels,microcracks may nucleate,grow and propagate through the rock matrix;secondary microcracks may appear,and discontinuous and incompatible deformation of rock masses may occur.The classical continuum elastoplastic theory is not suitable for analyzing discontinuous and incompatible deformation of rock masses.Based on non-Euclidean model of the discontinuous and incompatible deformation of rock masses,the distribution of stresses in the surrounding rock masses in deep tunnels is fluctuant or wave-like.The stress concentration at the tips of microcracks located in vicinity of stress wave crest is comparatively large,which may lead to the unstable growth and coalescence of secondary microcracks,and consequently the occurrence of fractured zones.On the other hand,the stress concentration at the tips of microcracks located around stress wave trough is relatively small,which may lead to the arrest of microcracks,and thus the non-fractured zones.The alternate appearance of stress wave crest and trough thus may induce the alternate occurrence of fractured and non-fractured zones in deep rock masses.For brittle rocks,the dissipated energy of microcrack growth is small,but the elastic strain energy stored in rock masses may be larger than the dissipated energy growths of pre-existing microcracks and secondary microcracks.The sudden release of the residual elastic strain energy may lead to rockburst.Based on this understanding,the criteria of rockburst are established.Furthermore,the relationship between rockbursts and zonal disintegration in the surrounding rock masses around deep tunnels is studied.The influences of the in-situ stresses and the physico-mechanical parameters on the distribution of rockburst zones and the ejection velocity of rock fragments are investigated in detail.展开更多
Traditional methods of coal thermal resistance characterization are informative but considerably timeconsuming and require utilization of a complex and expensive equipment. This limits the effectiveness of their appli...Traditional methods of coal thermal resistance characterization are informative but considerably timeconsuming and require utilization of a complex and expensive equipment. This limits the effectiveness of their application. In this paper, authors experimentally investigated potential application of thermally stimulated acoustic emission method for developing of relatively simple and rapid coals thermal resistance assessment method. Features of thermally stimulated acoustic emission of anthracite, lignites and bituminous coal samples subject to cyclic thermal loading have been experimentally investigated.For the first time, it has been shown that there exists a relationship of such patterns with structural parameters and properties of the coal samples, as well as their thermal resistance. The results indicate the possibility of applying the method of thermally stimulated acoustic emission to control processes of cryogenic disintegration and thermal resistance of fossil coals. The description of the equipment and methodological support needed for the implementation of this method have been provided.展开更多
The zonal disintegration phenomenon (ZDP) is a typical phenomenon in deep block rock masses. In order to investigate the mechanism of ZDP, an improved non-linear Hock-Brown strength criterion and a bi-linear constit...The zonal disintegration phenomenon (ZDP) is a typical phenomenon in deep block rock masses. In order to investigate the mechanism of ZDP, an improved non-linear Hock-Brown strength criterion and a bi-linear constitutive model of rock mass were used to analyze the elasto-plastic stress field of the enclosing rock mass around a deep round tunnel. The radius of the plastic region and stress of the enclosing rock mass were obtained by introducing dimensionless parameters of radial distance. The results show that tunneling in deep rock mass causes a maximum stress zone to appear in the vicinity of the boundary of the elastic and the plastic zone in the surrounding rock mass. Under the compression of a large tangential force and a small radial force, the rock mass in the maximum stress zone was in an approximate uniaxial loading state, which could lead to a split failure in the rock mass.展开更多
The microstructure of the RE silicide alloy was studied by SEM. The feature of the phase and the distribution of Ca, P, Al were analyzed, especially the distribution of micro-cracks and its composition were determined...The microstructure of the RE silicide alloy was studied by SEM. The feature of the phase and the distribution of Ca, P, Al were analyzed, especially the distribution of micro-cracks and its composition were determined. The result demonstrates that only a few phosphides contribute to the spontaneous crumbling of the RE silicide alloy by reacting with water and forming oxide or phosphorus oxide. The phosphorus content is not the critical factor of disintegration in the alloy studied.展开更多
Oral disintegrating tablets(ODTs) are a novel dosage form that can be dissolved on thetongue within 3 min or less especially for geriatric and pediatric patients. Current ODT for-mulation studies usually rely on the p...Oral disintegrating tablets(ODTs) are a novel dosage form that can be dissolved on thetongue within 3 min or less especially for geriatric and pediatric patients. Current ODT for-mulation studies usually rely on the personal experience of pharmaceutical experts andtrial-and-error in the laboratory, which is inefficient and time-consuming. The aim of cur-rent research was to establish the prediction model of ODT formulations with direct com-pression process by artificial neural network(ANN) and deep neural network(DNN) tech-niques. 145 formulation data were extracted from Web of Science. All datasets were dividedinto three parts: training set(105 data), validation set(20) and testing set(20). ANN andDNN were compared for the prediction of the disintegrating time. The accuracy of the ANNmodel have reached 85.60%, 80.00% and 75.00% on the training set, validation set and testingset respectively, whereas that of the DNN model were 85.60%, 85.00% and 80.00%, respec-tively. Compared with the ANN, DNN showed the better prediction for ODT formulations.It is the first time that deep neural network with the improved dataset selection algorithmis applied to formulation prediction on small data. The proposed predictive approach couldevaluate the critical parameters about quality control of formulation, and guide researchand process development. The implementation of this prediction model could effectivelyreduce drug product development timeline and material usage, and proactively facilitatethe development of a robust drug product.展开更多
Zonal disintegration is a typical static phenomenon of deep rock masses. It has been defined as alternating regions of fractured and relatively intact rock mass that appear around or in front of the working stope duri...Zonal disintegration is a typical static phenomenon of deep rock masses. It has been defined as alternating regions of fractured and relatively intact rock mass that appear around or in front of the working stope during excavation of a deep tunnel. Zonal disintegration phenomenon was successfully demonstrated in the laboratory with 3D tests on analogous gypsum models, two circular cracked zones were observed in the test. The linear Mohr-Coulomb yield criterion was used with a constitutive model that showed linear softening and ideal residual plastic to analyze the elasto-plastic field of the enclosing rock mass around a deep tunnel. The results show that tunneling causes a maximum stress zone to appear between an elastic and plastic zone in the surrounding rock. The zonal disintegration phenomenon is analyzed by considering the stress-strain state of the rock mass in the vicinity of the maximum stress zone. Creep instability failure of the rock due to the development of the plastic zone, and transfer of the maximum stress zone into the rock mass, are the cause of zonal disintegration. An analytical criterion for the critical depth at which zonal disintegration can occur is derived. This depth depends mainly on the character and stress concentration coefficient of the rock mass.展开更多
Moisture induced disintegration of soft rock in Red Beds is common all over the world. The slake durability index test is most useful to quantify durability of the soft rocks. Based on a series of slaking test, this a...Moisture induced disintegration of soft rock in Red Beds is common all over the world. The slake durability index test is most useful to quantify durability of the soft rocks. Based on a series of slaking test, this article aims to develop a durability classification involving particle size and slaking procedure. To describe the slaking procedure in detail,the Relative Slake Durability Index(Id_i) is proposed. The Id_i is the percentage ratio of the i^(th) weight of oven-dry retained portion to the(i-1)^(th) weight of ovendry retained portion. Results show that the Id_i of samples have a large difference in certain slaking procedure, whereas the traditional Durability Slake Index(Id) is almost constant. Considering this limitation of Id in durability classification, an advanced classification by applying the Id_i and disintegration ratio(DR) is further established in this article. Compared to the durability classification based on Slake Durability Index(Id), the new classification accounts for the particle size of the slaked material and the slaking procedure, so it provides a better measure of the degree of slaking. The classification recommended in this article divide the slake durability into three classes(i.e., low, medium and high class). Furthermore, it divides both the low class and the medium class into 3 subclasses.展开更多
The purpose of this review is to discuss the advantages and limitations of taste sensors in the evaluation of the taste of palatability of different oral dosage forms. First, we consider some ways in which the palatab...The purpose of this review is to discuss the advantages and limitations of taste sensors in the evaluation of the taste of palatability of different oral dosage forms. First, we consider some ways in which the palatability of various pharmaceutical formulations including orally disintegrating tablets(ODTs) are tested using two different taste sensors. Second, we focus on the evaluation of palatability of ODTs. We compare the usefulness of three pieces of apparatus for estimating the disintegration time of ODTs. Finally, we compare the characteristics of the two taste sensors in the evaluation of palatability of various kinds of drug formulations.展开更多
Tamusu mudstone, located in Bayin Gobi Basin in Inner Mongolia of China, has been selected as a potential host rock for high-level radioactive waste(HLW) disposal in China. A series of tests has been carried out, incl...Tamusu mudstone, located in Bayin Gobi Basin in Inner Mongolia of China, has been selected as a potential host rock for high-level radioactive waste(HLW) disposal in China. A series of tests has been carried out, including X-ray diffraction(XRD) tests, scanning electron microscopy(SEM) tests, disintegration tests, permeability tests and triaxial compression tests, to estimate the physico-mechanical properties of Tamusu mudstone in this work. The mineral composition of Tamusu mudstone was analyzed and it was considered as a stable rock due to its low disintegration rate, i.e. approximately 0.11%after several wet/dry cycles. Based on the results of permeability test, it was found that Tamusu mudstone has a low permeability, with the magnitude of about 10—20m^(2). The low permeability makes the mudstone well prevent nuclide migration and diffusion, and might be influenced by temperature.The triaxial tests show that Tamusu mudstone is a stiff mudstone with high compressive strength, which means that the excavation disturbed zone would be smaller compared to other types of mudstone due to construction and operation of HLW repositories. Finally, the properties of Tamusu mudstone were compared with those of Opalinus clay, Callovo-Oxfordian(COx) argillite, and Boom clay to further discuss the possibility of using Tamusu mudstone as a potential nuclear waste disposal medium.展开更多
Disintegration of rock is one of the primary processes of soil formation and geomorphology and is affected considerably by water and heat.This study focused on the disintegration characteristics under laboratory condi...Disintegration of rock is one of the primary processes of soil formation and geomorphology and is affected considerably by water and heat.This study focused on the disintegration characteristics under laboratory conditions of typical purple mudstone from the Tuodian group of Jurassic red beds(J3t) in Tuodian Town,Shuangbai county,Yunnan Province of southern China.The fresh mudstone was subjected to alternating applications of water,heat and hydrothermal interaction during five treatments:wetting-drying(WD),saturation(ST),refrigeration-heating(RH),a combination of wetting-drying and refrigeration-heating(WDRH),and a combination of saturation and refrigeration-heating(STRH).Each treatment was run in twenty-four cycles.The results showed that there are three types of disintegration:collapsing disintegration,exfoliation disintegration and imperceptible disintegration.The cumulative disintegration rate(percentage of cumulative disintegrated mass to the initiative sample mass passed through a 2 mm sieve) produced a 'S'-shape function when related to treatment cycle time and closely fit a logistic model(R2 > 0.99).The rank order of the cumulative disintegration rate resulting from the five treatments was as the following:WDRH > STRH > ST > WD > RH.Because of alternating periods of moisture and dryness,WD caused the most disintegration,while RH alone resulted in imperceptible disintegration.Additionally,there was a negative correlation between the disintegration rate of each treatment cycle(percentage of disintegrated mass to the treated sample mass) and treatment cycle number.There was a positive correlation between this rate and temperature change under moist conditions,indicating that a change in temperature greatly accelerates the disintegration of parent rock when water was supplied.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.72071153 and 72231008)Laboratory of Science and Technology on Integrated Logistics Support Foundation (Grant No.6142003190102)the Natural Science Foundation of Shannxi Province (Grant No.2020JM486)。
文摘Identifying critical nodes or sets in large-scale networks is a fundamental scientific problem and one of the key research directions in the fields of data mining and network science when implementing network attacks, defense, repair and control.Traditional methods usually begin from the centrality, node location or the impact on the largest connected component after node destruction, mainly based on the network structure.However, these algorithms do not consider network state changes.We applied a model that combines a random connectivity matrix and minimal low-dimensional structures to represent network connectivity.By using mean field theory and information entropy to calculate node activity,we calculated the overlap between the random parts and fixed low-dimensional parts to quantify the influence of node impact on network state changes and ranked them by importance.We applied this algorithm and the proposed importance algorithm to the overall analysis and stratified analysis of the C.elegans neural network.We observed a change in the critical entropy of the network state and by utilizing the proposed method we can calculate the nodes that indirectly affect muscle cells through neural layers.
基金co-funded by the National Natural Science Foundation of China(U204020742277323)+2 种基金the 111 Project of Hubei Province(2021EJD026)the open fund of Key Laboratory of Geological Hazards on Three Gorges Reservoir Area(China Three Gorges University)Ministry of Education(2022KDZ24).
文摘Soil aggregate is the basic structural unit of soil,which is the foundation for supporting ecosystem functions,while its composition and stability is significantly affected by the external environment.This study was conducted to explore the effect of external environment(wetting-drying cycles and acidic conditions)on the soil aggregate distribution and stability and identify the key soil physicochemical factors that affect the soil aggregate stability.The yellow‒brown soil from the Three Gorges Reservoir area(TGRA)was used,and 8 wetting-drying conditions(0,1,2,3,4,5,10 and 15 cycles)were simulated under 4 acidic conditions(pH=3,4,5 and 7).The particle size distribution and soil aggregate stability were determined by wet sieving method,the contribution of environmental factors(acid condition,wetting-drying cycle and their combined action)to the soil aggregate stability was clarified and the key soil physicochemical factors that affect the soil aggregate stability under wetting-drying cycles and acidic conditions were determined by using the Pearson’s correlation analysis,Partial least squares path modeling(PLS‒PM)and multiple linear regression analysis.The results indicate that wetting-drying cycles and acidic conditions have significant effects on the stability of soil aggregates,the soil aggregate stability gradually decreases with increasing number of wetting-drying cycles and it obviously decreases with the increase of acidity.Moreover,the combination of wetting-drying cycles and acidic conditions aggravate the reduction in the soil aggregate stability.The wetting-drying cycles,acidic conditions and their combined effect imposes significant impact on the soil aggregate stability,and the wetting-drying cycles exert the greatest influence.The soil aggregate stability is significantly correlated with the pH,Ca^(2+),Mg^(2+),maximum disintegration index(MDI)and soil bulk density(SBD).The PLS‒PM and multiple linear regression analysis further reveal that the soil aggregate stability is primarily influenced by SBD,Ca^(2+),and MDI.These results offer a scientific basis for understanding the soil aggregate breakdown mechanism and are helpful for clarifying the coupled effect of wetting-drying cycles and acid rain on terrestrial ecosystems in the TGRA.
基金supported by the National Natural Science Foundation of China(Grant No.42162026)the Applied Basic Research Foundation of Yunnan Province(Grant No.202201AT070083).
文摘Although disintegrated dolomite,widely distributed across the globe,has conventionally been a focus of research in underground engineering,the issue of slope stability issues in disintegrated dolomite strata is gaining increasing prominence.This is primarily due to their unique properties,including low strength and loose structure.Current methods for evaluating slope stability,such as basic quality(BQ)and slope stability probability classification(SSPC),do not adequately account for the poor integrity and structural fragmentation characteristic of disintegrated dolomite.To address this challenge,an analysis of the applicability of the limit equilibrium method(LEM),BQ,and SSPC methods was conducted on eight disintegrated dolomite slopes located in Baoshan,Southwest China.However,conflicting results were obtained.Therefore,this paper introduces a novel method,SMRDDS,to provide rapid and accurate assessment of disintegrated dolomite slope stability.This method incorporates parameters such as disintegrated grade,joint state,groundwater conditions,and excavation methods.The findings reveal that six slopes exhibit stability,while two are considered partially unstable.Notably,the proposed method demonstrates a closer match with the actual conditions and is more time-efficient compared with the BQ and SSPC methods.However,due to the limited research on disintegrated dolomite slopes,the results of the SMRDDS method tend to be conservative as a safety precaution.In conclusion,the SMRDDS method can quickly evaluate the current situation of disintegrated dolomite slopes in the field.This contributes significantly to disaster risk reduction for disintegrated dolomite slopes.
基金Projects (50974035,51074047) supported by the National Natural Science Foundation of ChinaProject (20090407) supported by the Doctoral Fund of Ministry of Education,ChinaProject (200921007) supported by Liaoning Key Science and Technology,China
文摘In gas injection refining processes,wide dispersion of small bubbles in the bath is indispensable for high refining efficiency.Eccentric mechanical stirring with unidirectional impeller rotation was tested using a water model for pursuing better bubble disintegration and dispersion.Effects of various factors on bubble disintegration and dispersion were investigated.These factors were stirring mode,eccentricity and rotation speed,nozzle structure,nozzle immersion depth,and gas flow rate.Gas injection from a nozzle at the end of the impeller shaft and from an immersed lance was studied.Under eccentric stirring,a vortex was formed away from the shaft.Small bubbles were produced in the strong turbulence or high shear stress field near the rotating impeller and moved in the direction to the vortex keeping up with the macroscopic flow induced by the mechanical stirring.Thus small bubbles could disperse widely in the bath under eccentric stirring with unidirectional rotation.
文摘Ahn To develop a high resolution HPLC method for the determination of ondansetron in human plasma and to study the pharmacokinetics of ondansetron in orally disintegrating tablets. Methods HPLC determination involved liquid-liquid extraction, separation on a CN column and ultraviolet detection at 310 ran with granisetron as an internal standard. Pharmacokinetics and bioequivalence of ondansetron in orally disintegrating tablets by direct compression and conventional 8 mg tablets were evaluated and compared in 20 healthy human male volunteers after a single oral dose in a randomized cross-over study. Results The limit of quantification was 0.25 ng· mL^-1. The recovery was about 85 % or over for ondan setron and about 90% for internal standard. Linearity was good within the concentration range of 0.5 - 50 ng·mL^-1 with r^2 ranging from 0.997 1 to 0.999 9. Intra- and inter-assay coefficients of variation ranged from 1.78% to 2.38% and 3.88% -5.19%, respectively. Accuracies for spiked concentrations of 2.0, 10.0, and 30.0 ng·mL^-1 were 104.7% ±4.4%, 102.2% ± 1.1%, and99.51% ±2.34%, respectively. Pharmacokinetic parameters of AUCo-t, AUCo-∞ , Cmax, Tmax, and T1/2 were 230.2 ± 78.0 ng·h·L^-1 , 265.2± 101.5 ng·h·mL^-1, 35.67 ± 8.94 ng·mL^-l, 1.51 ±0.79 h, and 5.00± 1.41 h for orally disintegrating tablets, respectively. The analysis of variance did not show any significant difference between orally disintegrating tablets and conventional tablets, and 90% confidence intervals fell within the acceptable range for bioequivalence. Conclusion High resolution HPLC method has been set up and applied in pharmacokinetic evaluation of ondansetron in orally disintegrating tablets.
文摘Aim The aim of the present study was to prepare tablets which can rapidlydisintegrate in saliva, containing active ingredient in high dose (37.5% W/W). Methods Rapidlydisintegrating tablets containing rotundine were prepared by direct compression, wet granulation andmoulding, respectively . Different disintegrants and excipients were decided by single factor test.The typical disintegration time measurement and a new method of wetting time measuring wereintroduced for assessing rapidly disintegrating tablets. Results The tablets (80 mg) prepared bydirect compression have the crushing strength of 4.0 kg ?mm^(-2) and rapidly disintegratewithin 15 s in the saliva of healthy volunteers; the tablets prepared by wet granulation also havesufficient strength, a little longer but acceptable disintegration time (within 25 s in saliva) ;and the tablets obtained by moulding show disintegration within 40 s in saliva but low strength (2kg·mm^(-2)) . Disintegration time profiles of tablets are similar to those of wetting time, and thedisintegration and wetting times in vitro are similar to the disintegration time in vivo, thelatter having higher correlation with that in oral cavity. Conclusion The rapidly disintegratingtablets can be prepared by using these three techniques and excipients. Both in vitro disintegrationtime and wetting time are necessary indexes for judgment of in vitro disintegration profile.
文摘Objective:An attempt was made to study the use of papaya pulp powder as a disintegrant in tablet formulations. The objective of the present work is to identify a natural binding and disintegrating agent for formulating tablets and to study the effect of disintegrating agents and binding agents on the dissolution of the formulation containing paracetamol.Methods:Papaya pulp powder is obtained from unripe papaya fruit.The fruit was screened for its physical and chemical characteristics and used in tablet formulations.In order to find out the percentage that could be used to formulate a product containing good disintegrating and dissolution characteristics, several formulations(Paracetamol) with different concentrations of 8%,10%,12%,15%,20%,25%& 30%were prepared.As a comparison,an already established disintegrant,sodium starchgylcolate was selected and several formulations containing similar concentrations,were also prepared.The invitro evaluation of the formulations were undertaken,and the results compared.In the present study preformulation studies on the purity, development of calibration curve of the drug and the compatibility between the drug and excepients were carried out.The fruits were cut into small pieces,grated,dried and powdered,passed through different sieves and made into fine powder.Fine powder of papaya was mixed with required amount of drug and sodium starchgylcolate individually in different concentrations along with other additives & binding agents.The dried granules were compressed into tablets and all the formulated dosage forms of paracetamol tablets were subjected to quality control tests like hardness disintegration and dissolution.Results:From the results it was observed that formulations S1 and P7 containing 8%of sodium starchgylcolate and 30%of papaya pulp powder showed good disintegration and dissolution characteristics.Conclusion:Since the tablet formulation P7 containing 30%of papaya pulp powder shows good disintegration and dissolution characteristics and also falls with in the limits of other tablet evaluation parameter,it justifies the possible use of papaya pulp powder as a disintegrant in tablet formulation.The percentage of papaya pulp powder to be used could depend on the nature of the formulation and other excepients used along with it.
基金supported by the National Natural Science Foundation of China(Nos.50490275 and 50778184)
文摘Size and quantity of fractured zone and non-fractured zone are controlled by cracks contained in deep rock masses. Zonal disintegration mechanism is strongly dependent on the interaction among cracks. The strong interaction among cracks is investigated using stress superposition principle and the Chebyshev polynomials expansion of the pseudo-traction. It is found from numerical results that crack nucleation, growth and coalescence lead to failure of deep crack- weakened rock masses. The stress redistribution around the surrounding rock mass induced by unloading excavation is studied. The effect of the excavation time on nucleation, growth, interaction and coalescence of cracks was analyzed. Moreover, the influence of the excavation time on the size and quantity of fractured zone and non-fractured zone was given. When the excavation time is short, zonal disintegration phenomenon may occur in deep rock masses. It is shown from numerical results that the size and quantity of fractured zone increase with decreasing excavation time, and the size and quantity of fractured zone increase with the increasing value of in-situ geostress.
基金supported by the National Natural Science Foundation of China (Nos. 41877228, 41877229 and 42102303)Guangdong Basic and Applied Basic Research Foundation (Nos. 2018B030311066 and 2019A1515010554)+1 种基金China Postdoctoral Science Foundation (No. 2019M663241)Science and Technology Program of Guangzhou, China (No. 201904010136)。
文摘The disintegration of granite residual soil is especially affected by variations in physical and chemical properties. Serious geologic hazards or engineering problems are closely related to the disintegration of granite residual soil in certain areas. Research on the mechanical properties and controlling mechanisms of disintegration has become a hot issue in practical engineering. In this paper, the disintegration characteristics of improved granite residual soil are studied by using a wet and dry cycle disintegration instrument, and the improvement mechanism is analyzed. The results show that the disintegration amounts and disintegration ratios of soil samples treated with different curing agents are obviously different. The disintegration process of improved granite residual soil can be roughly divided into 5 stages:the forcible water intrusion stage, microcrack and fissure development stage, curing and strengthening stage, stable stage, and sudden disintegration stage. The disintegration of granite residual soil is caused by the weakening of the cementation between soil particles under the action of water. When the disintegration force is greater than the anti-disintegration force of soil, the soil will disintegrate. Cement and lime mainly rely on ion exchange agglomeration, the inclusion effect of curing agents on soil particles, the hard coagulation reaction and carbonation to strengthen granite residual soil. Kaolinite mainly depends on the reversibility of its own cementation to improve and strengthen granite residual soil. The reversibility of kaolinite cementation is verified by investigating pure kaolinite with a tensile, soaking, drying and tensile test cycle. Research on the disintegration characteristics and disintegration mechanism of improved granite residual soil is of certain reference value for soil modification.
基金Projects 50525825 supported by the National Natural Science Foundation of China2009CB724608 by the National Basic Research Program of China
文摘The mechanism of the zonal disintegration phenomenon(ZDP) was realized based on the analysis of the stressedstrained state of the rock mass in the vicinity of the maximum stress zone, which resides in the creep instability failure of rock mass due to the development of a plastic zone and transfer of the maximum stress zone within the rock mass.Some characteristic parameters of the ZDP are discussed theoretically.In first instance, the analytical critical depth condition for the occurrence of ZDP was obtained, which depends on the characteristics and stress concentration coefficient of the rock mass.Secondly, based on creep theory, the expression of the outer radius of the undisturbed zones in the deep rock mass was obtained with the use of an improved Burgers rheological model, which indicated that the radius depends on the characteristics of the rock mass and the depth of excavation and increases quasi-linearly with the rise of creep compliance of the rock mass.Finally, the formula for the distance of the most remote fissured zone away from the working periphery was derived, which increases logarithmically with the increase in the ratio of the in-situ stress and ultimate strength of rock mass.The distances between fissured zones are discussed in qualitative terms.
基金Supported by the National Natural Science Foundation of China (51078371,51021001)the Natural Science Foundation Project of CQ CSTC (2009BA4046,2009AB6194)
文摘Rock masses without pre-existing macrocracks can usually be considered as granular materials with only microcracks.During the excavation of the tunnels,microcracks may nucleate,grow and propagate through the rock matrix;secondary microcracks may appear,and discontinuous and incompatible deformation of rock masses may occur.The classical continuum elastoplastic theory is not suitable for analyzing discontinuous and incompatible deformation of rock masses.Based on non-Euclidean model of the discontinuous and incompatible deformation of rock masses,the distribution of stresses in the surrounding rock masses in deep tunnels is fluctuant or wave-like.The stress concentration at the tips of microcracks located in vicinity of stress wave crest is comparatively large,which may lead to the unstable growth and coalescence of secondary microcracks,and consequently the occurrence of fractured zones.On the other hand,the stress concentration at the tips of microcracks located around stress wave trough is relatively small,which may lead to the arrest of microcracks,and thus the non-fractured zones.The alternate appearance of stress wave crest and trough thus may induce the alternate occurrence of fractured and non-fractured zones in deep rock masses.For brittle rocks,the dissipated energy of microcrack growth is small,but the elastic strain energy stored in rock masses may be larger than the dissipated energy growths of pre-existing microcracks and secondary microcracks.The sudden release of the residual elastic strain energy may lead to rockburst.Based on this understanding,the criteria of rockburst are established.Furthermore,the relationship between rockbursts and zonal disintegration in the surrounding rock masses around deep tunnels is studied.The influences of the in-situ stresses and the physico-mechanical parameters on the distribution of rockburst zones and the ejection velocity of rock fragments are investigated in detail.
基金kindly supported by the Russian Foundation for Basic Research (RFBR) (No. 16-05-00033A)
文摘Traditional methods of coal thermal resistance characterization are informative but considerably timeconsuming and require utilization of a complex and expensive equipment. This limits the effectiveness of their application. In this paper, authors experimentally investigated potential application of thermally stimulated acoustic emission method for developing of relatively simple and rapid coals thermal resistance assessment method. Features of thermally stimulated acoustic emission of anthracite, lignites and bituminous coal samples subject to cyclic thermal loading have been experimentally investigated.For the first time, it has been shown that there exists a relationship of such patterns with structural parameters and properties of the coal samples, as well as their thermal resistance. The results indicate the possibility of applying the method of thermally stimulated acoustic emission to control processes of cryogenic disintegration and thermal resistance of fossil coals. The description of the equipment and methodological support needed for the implementation of this method have been provided.
基金Projects 50525825, 50490275 and 90815010 supported by the National Natural Science Foundation of China2009CB724608 by the National BasicResearch Program of China
文摘The zonal disintegration phenomenon (ZDP) is a typical phenomenon in deep block rock masses. In order to investigate the mechanism of ZDP, an improved non-linear Hock-Brown strength criterion and a bi-linear constitutive model of rock mass were used to analyze the elasto-plastic stress field of the enclosing rock mass around a deep round tunnel. The radius of the plastic region and stress of the enclosing rock mass were obtained by introducing dimensionless parameters of radial distance. The results show that tunneling in deep rock mass causes a maximum stress zone to appear in the vicinity of the boundary of the elastic and the plastic zone in the surrounding rock mass. Under the compression of a large tangential force and a small radial force, the rock mass in the maximum stress zone was in an approximate uniaxial loading state, which could lead to a split failure in the rock mass.
文摘The microstructure of the RE silicide alloy was studied by SEM. The feature of the phase and the distribution of Ca, P, Al were analyzed, especially the distribution of micro-cracks and its composition were determined. The result demonstrates that only a few phosphides contribute to the spontaneous crumbling of the RE silicide alloy by reacting with water and forming oxide or phosphorus oxide. The phosphorus content is not the critical factor of disintegration in the alloy studied.
基金financially supported by the Universityof Macao Research Grant (MYRG2016-00038-ICMS-QRCM &MYRG2016-00040-ICMS-QRCM)Macao Science and Technology Development Fund (FDCT) (Grant No. 103/2015/A3)the National Natural Science Foundation of China (Grant No. 61562011 )
文摘Oral disintegrating tablets(ODTs) are a novel dosage form that can be dissolved on thetongue within 3 min or less especially for geriatric and pediatric patients. Current ODT for-mulation studies usually rely on the personal experience of pharmaceutical experts andtrial-and-error in the laboratory, which is inefficient and time-consuming. The aim of cur-rent research was to establish the prediction model of ODT formulations with direct com-pression process by artificial neural network(ANN) and deep neural network(DNN) tech-niques. 145 formulation data were extracted from Web of Science. All datasets were dividedinto three parts: training set(105 data), validation set(20) and testing set(20). ANN andDNN were compared for the prediction of the disintegrating time. The accuracy of the ANNmodel have reached 85.60%, 80.00% and 75.00% on the training set, validation set and testingset respectively, whereas that of the DNN model were 85.60%, 85.00% and 80.00%, respec-tively. Compared with the ANN, DNN showed the better prediction for ODT formulations.It is the first time that deep neural network with the improved dataset selection algorithmis applied to formulation prediction on small data. The proposed predictive approach couldevaluate the critical parameters about quality control of formulation, and guide researchand process development. The implementation of this prediction model could effectivelyreduce drug product development timeline and material usage, and proactively facilitatethe development of a robust drug product.
基金Projects 50490275 and 50525825 supported by the National Natural Science Foundation of China
文摘Zonal disintegration is a typical static phenomenon of deep rock masses. It has been defined as alternating regions of fractured and relatively intact rock mass that appear around or in front of the working stope during excavation of a deep tunnel. Zonal disintegration phenomenon was successfully demonstrated in the laboratory with 3D tests on analogous gypsum models, two circular cracked zones were observed in the test. The linear Mohr-Coulomb yield criterion was used with a constitutive model that showed linear softening and ideal residual plastic to analyze the elasto-plastic field of the enclosing rock mass around a deep tunnel. The results show that tunneling causes a maximum stress zone to appear between an elastic and plastic zone in the surrounding rock. The zonal disintegration phenomenon is analyzed by considering the stress-strain state of the rock mass in the vicinity of the maximum stress zone. Creep instability failure of the rock due to the development of the plastic zone, and transfer of the maximum stress zone into the rock mass, are the cause of zonal disintegration. An analytical criterion for the critical depth at which zonal disintegration can occur is derived. This depth depends mainly on the character and stress concentration coefficient of the rock mass.
基金financially supported by the National Natural Science Foundation of China (Grant No. 41272332)
文摘Moisture induced disintegration of soft rock in Red Beds is common all over the world. The slake durability index test is most useful to quantify durability of the soft rocks. Based on a series of slaking test, this article aims to develop a durability classification involving particle size and slaking procedure. To describe the slaking procedure in detail,the Relative Slake Durability Index(Id_i) is proposed. The Id_i is the percentage ratio of the i^(th) weight of oven-dry retained portion to the(i-1)^(th) weight of ovendry retained portion. Results show that the Id_i of samples have a large difference in certain slaking procedure, whereas the traditional Durability Slake Index(Id) is almost constant. Considering this limitation of Id in durability classification, an advanced classification by applying the Id_i and disintegration ratio(DR) is further established in this article. Compared to the durability classification based on Slake Durability Index(Id), the new classification accounts for the particle size of the slaked material and the slaking procedure, so it provides a better measure of the degree of slaking. The classification recommended in this article divide the slake durability into three classes(i.e., low, medium and high class). Furthermore, it divides both the low class and the medium class into 3 subclasses.
文摘The purpose of this review is to discuss the advantages and limitations of taste sensors in the evaluation of the taste of palatability of different oral dosage forms. First, we consider some ways in which the palatability of various pharmaceutical formulations including orally disintegrating tablets(ODTs) are tested using two different taste sensors. Second, we focus on the evaluation of palatability of ODTs. We compare the usefulness of three pieces of apparatus for estimating the disintegration time of ODTs. Finally, we compare the characteristics of the two taste sensors in the evaluation of palatability of various kinds of drug formulations.
基金the general programs of the National Natural Science Foundation of China (Grant Nos. 51979266 and 51879258)the Youth Innovation Promotion Association of the Chinese Academy of Sciences for their support of this study。
文摘Tamusu mudstone, located in Bayin Gobi Basin in Inner Mongolia of China, has been selected as a potential host rock for high-level radioactive waste(HLW) disposal in China. A series of tests has been carried out, including X-ray diffraction(XRD) tests, scanning electron microscopy(SEM) tests, disintegration tests, permeability tests and triaxial compression tests, to estimate the physico-mechanical properties of Tamusu mudstone in this work. The mineral composition of Tamusu mudstone was analyzed and it was considered as a stable rock due to its low disintegration rate, i.e. approximately 0.11%after several wet/dry cycles. Based on the results of permeability test, it was found that Tamusu mudstone has a low permeability, with the magnitude of about 10—20m^(2). The low permeability makes the mudstone well prevent nuclide migration and diffusion, and might be influenced by temperature.The triaxial tests show that Tamusu mudstone is a stiff mudstone with high compressive strength, which means that the excavation disturbed zone would be smaller compared to other types of mudstone due to construction and operation of HLW repositories. Finally, the properties of Tamusu mudstone were compared with those of Opalinus clay, Callovo-Oxfordian(COx) argillite, and Boom clay to further discuss the possibility of using Tamusu mudstone as a potential nuclear waste disposal medium.
基金supported by National Natural Science Foundation of China (Grant No.40971168)National Basic Research Program of China (973 Program) (Grant No. 2007CB407206)
文摘Disintegration of rock is one of the primary processes of soil formation and geomorphology and is affected considerably by water and heat.This study focused on the disintegration characteristics under laboratory conditions of typical purple mudstone from the Tuodian group of Jurassic red beds(J3t) in Tuodian Town,Shuangbai county,Yunnan Province of southern China.The fresh mudstone was subjected to alternating applications of water,heat and hydrothermal interaction during five treatments:wetting-drying(WD),saturation(ST),refrigeration-heating(RH),a combination of wetting-drying and refrigeration-heating(WDRH),and a combination of saturation and refrigeration-heating(STRH).Each treatment was run in twenty-four cycles.The results showed that there are three types of disintegration:collapsing disintegration,exfoliation disintegration and imperceptible disintegration.The cumulative disintegration rate(percentage of cumulative disintegrated mass to the initiative sample mass passed through a 2 mm sieve) produced a 'S'-shape function when related to treatment cycle time and closely fit a logistic model(R2 > 0.99).The rank order of the cumulative disintegration rate resulting from the five treatments was as the following:WDRH > STRH > ST > WD > RH.Because of alternating periods of moisture and dryness,WD caused the most disintegration,while RH alone resulted in imperceptible disintegration.Additionally,there was a negative correlation between the disintegration rate of each treatment cycle(percentage of disintegrated mass to the treated sample mass) and treatment cycle number.There was a positive correlation between this rate and temperature change under moist conditions,indicating that a change in temperature greatly accelerates the disintegration of parent rock when water was supplied.