A novel implementation of negative stiffness elements(NSEs)is proposed,utilizing industrial grade nitrogen gas springs as pre-stressed stiffness elements in a configuration with lever arms.This NSE is combined with an...A novel implementation of negative stiffness elements(NSEs)is proposed,utilizing industrial grade nitrogen gas springs as pre-stressed stiffness elements in a configuration with lever arms.This NSE is combined with an inerter to form a stiff dynamic absorber(SDA)for vertical seismic protection of structures with base isolation.The SDA is optimized to minimize vertical accelerations while ensuring static structural integrity,excellent damping performance and containment of relative displacements.The introduction of gas springs in place of conventional linear springs addresses important practical limitations through features of non-linearity and industrial grade manufacturing.The proposed implementation is dimensioned for a 50-ton structure and evaluated numerically for 25 actual earthquake records,in comparison with a linear SDA model and an equivalent conventional damper(CD).Individual and averaged results of acceleration and displacement time histories demonstrate vastly superior response compared to CD regarding induced accelerations for similar displacements.Performance equivalency with the linear SDA model indicates the stability of the gas spring implementation while guaranteeing predictability,tested endurance,proper tolerances,and off-axis motion resistance without requiring additional guiding components,as opposed to conventional springs.These features render the proposed implementation a promising solution for the realization of NSEs in seismic protection.展开更多
在竖向隔震中,为同时满足高静态刚度和低动态刚度的需求,提出一种基于预压碟簧的负刚度装置(disc spring negative stiffness device,DSNSD),利用其与已有的预压弹簧装置(prepressed spring device,PSD)集成为拥有高静低动刚度的竖向隔...在竖向隔震中,为同时满足高静态刚度和低动态刚度的需求,提出一种基于预压碟簧的负刚度装置(disc spring negative stiffness device,DSNSD),利用其与已有的预压弹簧装置(prepressed spring device,PSD)集成为拥有高静低动刚度的竖向隔震支座(PSD-DSNSD隔震支座)。首先对DSNSD的构造与工作原理进行详述,建立相应的力学模型,再通过Python进行数值模拟,考察上述碟簧装置的力学性能,最后利用Abaqus建立PSD-DSNSD竖向隔震支座的有限元模型进行模拟。结果表明:加入DSNSD后竖向隔震支座的隔震刚度显著降低,验证了将DSNSD用于竖向隔震增效的可行性。说明DSNSD在启动后可提供负刚度,从而有效减小整体装置的竖向刚度。展开更多
基金European Union′s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie Grant No.INSPIRE-813424(“INSPIRE-Innovative Ground Interface Concepts for Structure Protection”)。
文摘A novel implementation of negative stiffness elements(NSEs)is proposed,utilizing industrial grade nitrogen gas springs as pre-stressed stiffness elements in a configuration with lever arms.This NSE is combined with an inerter to form a stiff dynamic absorber(SDA)for vertical seismic protection of structures with base isolation.The SDA is optimized to minimize vertical accelerations while ensuring static structural integrity,excellent damping performance and containment of relative displacements.The introduction of gas springs in place of conventional linear springs addresses important practical limitations through features of non-linearity and industrial grade manufacturing.The proposed implementation is dimensioned for a 50-ton structure and evaluated numerically for 25 actual earthquake records,in comparison with a linear SDA model and an equivalent conventional damper(CD).Individual and averaged results of acceleration and displacement time histories demonstrate vastly superior response compared to CD regarding induced accelerations for similar displacements.Performance equivalency with the linear SDA model indicates the stability of the gas spring implementation while guaranteeing predictability,tested endurance,proper tolerances,and off-axis motion resistance without requiring additional guiding components,as opposed to conventional springs.These features render the proposed implementation a promising solution for the realization of NSEs in seismic protection.
文摘在竖向隔震中,为同时满足高静态刚度和低动态刚度的需求,提出一种基于预压碟簧的负刚度装置(disc spring negative stiffness device,DSNSD),利用其与已有的预压弹簧装置(prepressed spring device,PSD)集成为拥有高静低动刚度的竖向隔震支座(PSD-DSNSD隔震支座)。首先对DSNSD的构造与工作原理进行详述,建立相应的力学模型,再通过Python进行数值模拟,考察上述碟簧装置的力学性能,最后利用Abaqus建立PSD-DSNSD竖向隔震支座的有限元模型进行模拟。结果表明:加入DSNSD后竖向隔震支座的隔震刚度显著降低,验证了将DSNSD用于竖向隔震增效的可行性。说明DSNSD在启动后可提供负刚度,从而有效减小整体装置的竖向刚度。