The growth of GaAs epilayers on silicon substrates with multiple layers of InAs quantum dots(QDs) as dislocation filters by metalorganic chemical vapor deposition(MOCVD) is investigated in detail.The growth condit...The growth of GaAs epilayers on silicon substrates with multiple layers of InAs quantum dots(QDs) as dislocation filters by metalorganic chemical vapor deposition(MOCVD) is investigated in detail.The growth conditions of single and multiple layers of QDs used as dislocation filters in GaAs/Si epilayers are optimized.It is found that the insertion of a five-layer InAs QDs into the GaAs buffer layer effectively reduces the dislocation density of GaAs/Si film.Compared with the dislocation density of 5×10^7 cm^-2 in the GaAs/Si sample without QDs,a density of 2×10^6 cm^-2 is achieved in the sample with QD dislocation filters.展开更多
We compare the effect of InGaAs/GaAs strained-layer superlattice(SLS) with that of GaAs thick buffer layer(TBL)serving as a dislocation filter layer. The InGaAs/GaAs SLS is found to be more effective than GaAs TBL in ...We compare the effect of InGaAs/GaAs strained-layer superlattice(SLS) with that of GaAs thick buffer layer(TBL)serving as a dislocation filter layer. The InGaAs/GaAs SLS is found to be more effective than GaAs TBL in blocking the propagation of threading dislocations, which are generated at the interface between the GaAs buffer layer and the Si substrate. Through testing and analysis, we conclude that the weaker photoluminescence for quantum dots(QDs) on Si substrate is caused by the quality of capping In_(0.15)Ga_(0.85)As and upper GaAs. We also find that the periodic misfits at the interface are related to the initial stress release of GaAs islands, which guarantees that the upper layers are stress-free.展开更多
基金supported by the Fundamental Research Funds for the Central Universities,China(Grant No.2013RC1205)the National Basic Research Program of China(Grant No.2010CB327601)
文摘The growth of GaAs epilayers on silicon substrates with multiple layers of InAs quantum dots(QDs) as dislocation filters by metalorganic chemical vapor deposition(MOCVD) is investigated in detail.The growth conditions of single and multiple layers of QDs used as dislocation filters in GaAs/Si epilayers are optimized.It is found that the insertion of a five-layer InAs QDs into the GaAs buffer layer effectively reduces the dislocation density of GaAs/Si film.Compared with the dislocation density of 5×10^7 cm^-2 in the GaAs/Si sample without QDs,a density of 2×10^6 cm^-2 is achieved in the sample with QD dislocation filters.
基金Project supported by the National Key Research and Development Program of China(Grant No.2018YFA0306101)the Scientific Instrument Developing Project of Chinese Academy of Sciences(Grant No.YJKYYQ20170032)the National Natural Science Foundation of China(Grant Nos.61790581,61435012,and 61505196)
文摘We compare the effect of InGaAs/GaAs strained-layer superlattice(SLS) with that of GaAs thick buffer layer(TBL)serving as a dislocation filter layer. The InGaAs/GaAs SLS is found to be more effective than GaAs TBL in blocking the propagation of threading dislocations, which are generated at the interface between the GaAs buffer layer and the Si substrate. Through testing and analysis, we conclude that the weaker photoluminescence for quantum dots(QDs) on Si substrate is caused by the quality of capping In_(0.15)Ga_(0.85)As and upper GaAs. We also find that the periodic misfits at the interface are related to the initial stress release of GaAs islands, which guarantees that the upper layers are stress-free.