Through numerical simulation for GPS data, aseismic negative dislocation model for crustal horizontal movement during 1999~2001 in the northeast margin of Qinghai-Xizang block is presented, combined with the spatial d...Through numerical simulation for GPS data, aseismic negative dislocation model for crustal horizontal movement during 1999~2001 in the northeast margin of Qinghai-Xizang block is presented, combined with the spatial distribution of apparent strain field in this area, the characteristics of motion and deformation of active blocks and their boundary faults, together with the place and intensity of strain accumulation are analyzed. It is shown that: a) 9 active blocks appeared totally clockwise motion from eastward by north to eastward by south. Obvious sinistral strike-slip and NE-NEE relative compressive motion between the blocks separated by Qilianshan-Haiyuan fault zone was discovered; b) 20 fault segments (most of them showed compression) locked the relative motion between blocks to varying degrees, among the total, the mid-east segment of Qilianshan fault (containing the place where it meets Riyueshan-Lajishan fault) and the place where it meets Haiyuan fault and Zhuanglanghe fault, more favored accumulation of strain. Moreover, the region where Riyueshan-Lajishan fault meets north boundary of Qaidam block may have strain accumulation to some degree. c) Obtained magnitude of block velocities and locking of their boundaries were less than relevant results for observation in the period of 1993~1999.展开更多
The methods were discussed to calculate the gravity variation due to crustal deformation based on a model of dis-location on a finite rectangular plane. Taking the Lijiang MS=7.0 earthquake as an example the calculati...The methods were discussed to calculate the gravity variation due to crustal deformation based on a model of dis-location on a finite rectangular plane. Taking the Lijiang MS=7.0 earthquake as an example the calculating princi-ple of fault parameters were determined, and the results were given. Of particular interests were the characteristics of the gravity variations in different dislocation types. With comparison between the calculated results and the practical measurements, it was found that the model could to some extent account for the observations. But it failed to give explanations to the more far spatial gravity variation.展开更多
By using molecular dynamics computer simulation at atomic level, the effects of single dislocation and dipole dislocations on nucleation and growth of martensitic transformation have been studied. It was found that o...By using molecular dynamics computer simulation at atomic level, the effects of single dislocation and dipole dislocations on nucleation and growth of martensitic transformation have been studied. It was found that only the location of tension or compression stress fields of the dislocations are favorable for martensite nucleation in NiAl alloy and the dislocations can move to accommodate partly the transformation strain during the nucleation and growth of martensite. Combined with the molecular dynamics simulation, a two dimensional simulation for martensite morphology based on a dislocation model has been performed. Many factors related to martensitic transformation were considered, such as supercooling, interface energy, shear strain, normal strain and hydrostatic pressure. Different morphologies of martensites, similar to lath, lenticular, thin plate, couple-plate and lenticular couple-plate martensites observed in Fe-C and Fe-Ni-C alloys, were obtained.展开更多
Theoretical analysis and practical observations show that fault dislocations can change the gravity field around the fault. Gravity changes which were caused by the repeated dislocations over a long period of time wer...Theoretical analysis and practical observations show that fault dislocations can change the gravity field around the fault. Gravity changes which were caused by the repeated dislocations over a long period of time were superimposed on the Bougeur gravity anomalies. These anomalies became the evidence of historical movement of fault as well as provide a way for the study of paleo earthquakes. This paper investigates inversion methods for the geological dislocation modeling of faults using the local Bouguer's gravity anomalies. To remove the effects of the irrelevant part of gravity anomalies to fault movements, we propose the robust nonlinear inversion method and set up the corresponding algorithm. Modeling examples indicate that the Marquardt's and Baye's least squares solutions depart from the true solution due to the attraction of gross errors in the data. The more seriously the data is contaminated, the more seriously the solutions are biased. In contrast, the proposed robust Marquardt's and Baye's inversion solutions can still maintain consistency with the solution without gross errors, even though 50 percent of the data is contaminated. This indicates that the proposed robust methods are effective. Using the proposed methods, we invert the geological dislocation models of the faults around the Erhai Lake in West Yunnan. The results show that the Northern Cangdong fault and the Erhai fault are normal dip slip faults with about 4 to 5 km dislocations; and that the Southern Cangdong fault has a less dip slip compared with the former two. A satisfactory fitting between the theoretical values of the inversion solution and the actual local gravity field is achievable.展开更多
The propagation for the model I crack in aluminum single crystal has been directly studied by in-situ TEM observation.The equation of energy barrier of the dislocation building-up and emission at the model I crack tip...The propagation for the model I crack in aluminum single crystal has been directly studied by in-situ TEM observation.The equation of energy barrier of the dislocation building-up and emission at the model I crack tip has been established by means of Peierls-Nabarro dislocation model and starting from angle of energy.By means of calculation,the critical value of spontaneous emission of the dislocations from tip of the model I crack was obtained.展开更多
The microstructure evolution of 7A85 aluminum alloy at the conditions of strain rate(0.001−1 s^(−1))and deformation temperature(250−450°C)was studied by optical microscopy(OM)and electron back scattering diffract...The microstructure evolution of 7A85 aluminum alloy at the conditions of strain rate(0.001−1 s^(−1))and deformation temperature(250−450°C)was studied by optical microscopy(OM)and electron back scattering diffraction(EBSD).Based on the K-M dislocation density model,a two-stage K-M dislocation density model of 7A85 aluminum alloy was established.The results reveal that dynamic recovery(DRV)and dynamic recrystallization(DRX)are the main mechanisms of microstructure evolution during thermal deformation of 7A85 aluminum alloy.350−400°C is the transformation zone from dynamic recovery to dynamic recrystallization.At low temperature(≤350°C),DRV is the main mechanism,while DRX mostly occurs at high temperature(≥400°C).At this point,the sensitivity of microstructure evolution to temperature is relatively high.As the temperature increased,the average misorientation angle(θˉ_(c))increased significantly,ranging from 0.93°to 7.13°.Meanwhile,the f_(LAGBs) decreased with the highest decrease of 24%.展开更多
The chaotic behaviour of dislocation multiplication process was investigated. The change of Lyapunov exponent which is used to determine the stability of quasi-periodic and chaotic behavior as well as that of equilib...The chaotic behaviour of dislocation multiplication process was investigated. The change of Lyapunov exponent which is used to determine the stability of quasi-periodic and chaotic behavior as well as that of equilibrium points, and periodic solution was reported by using an iteration model of dislocation multiplication. An unusual behavior of Lyapunov exponent and Feigenbaum exponent which respond to the geometric convergence of orbit from bifurcation to chaos was shown by dislocation velocity exponent m and there is a distinction on the tendency of convergence for the dislocation multiplication model when it was compared with logistic map. It is reasonable for the difference to be analyzed from the materials viewpoint. (Edited author abstract) 9 Refs.展开更多
A continuum model of solids with cylindrical microvoids is proposed based on the Taylor dislocation model. The model is an extension of Gurson model in the sense that the void size effect is accounted for. Beside the ...A continuum model of solids with cylindrical microvoids is proposed based on the Taylor dislocation model. The model is an extension of Gurson model in the sense that the void size effect is accounted for. Beside the void volume fraction f, the intrinsic material length l becomes a parameter representing voids since the void size comes into play in the Gurson model. Approximate yield functions in analytic forms are suggested for both solids with cylindrical microvoids and with spherical microvoids. The application to uniaxial tension curves shows a precise agreement between the approximate analytic yield function and the exact parametric form of integrals.展开更多
On the basis of the velocity field results of horizontal crustal movement obtained from GPS measurements during the periods of 1993-1999, 1999-2001 and 2001-2003 in the northeastern margin of Qinghai-Xizang block, and...On the basis of the velocity field results of horizontal crustal movement obtained from GPS measurements during the periods of 1993-1999, 1999-2001 and 2001-2003 in the northeastern margin of Qinghai-Xizang block, and by the inversion of negative dislocation model for the elastic block boundaries, we provide in this paper a qualitative analysis and quantitative description for the difference of motion and deformation between the tectonic blocks and their boundary faults, time-space distribution of tectonic strain field, and locations with highly accumulated strain energy and correlative intensity. Furthermore, taking the regional tectonics and block strain into full consideration, we investigate the common features of background precursors relating to location prediction for M greater than or equal 6 earthquakes.展开更多
The Second Crustal Deformation Monitoring Center, China Seismological Bureau, has detected a marked uplift associated with the Gonghe Ms=7.0 earthquake on April 26, 1990, Qinghai Province. From the observed vertical d...The Second Crustal Deformation Monitoring Center, China Seismological Bureau, has detected a marked uplift associated with the Gonghe Ms=7.0 earthquake on April 26, 1990, Qinghai Province. From the observed vertical deformations and using a rectangular uniform slip model in a homogeneous elastic half space, we first employ genetic algorithms (GA) to infer the approximate global optimal solution, and further use least squares method to get more accurate global optimal solution by taking the approximate solution of GA as the initial parameters of least squares. The inversion results show that the causative fault of Gonghe Ms=7.0 earthquake is a right-lateral reverse fault with strike NW60°, dip SW and dip angle 37°, the coseismic fracture length, width and slip are 37 km, 6 km and 2.7 m respectively. Combination of GA and least squares algorithms is an effective joint inversion method, which could not only escape from local optimum of least squares, but also solve the slow convergence problem of GA after reaching adjacency of global optimal solution.展开更多
In order to investigate the evolution of microstructure and flow stress during non-isothermal annealing,aluminum samples were subjected to strain magnitudes of 1, 2 and 3 by performing 2, 4 and 6 passes of multi-direc...In order to investigate the evolution of microstructure and flow stress during non-isothermal annealing,aluminum samples were subjected to strain magnitudes of 1, 2 and 3 by performing 2, 4 and 6 passes of multi-directional forging. Then, the samples were non-isothermally annealed up to 150, 200, 250, 300 and 350 ℃. The evolution of dislocation density and flow stress was studied via modeling of deformation and annealing stages. It was found that 2, 4 and 6 passes multi-directionally forged samples show thermal stability up to temperatures of 250, 250 and 300 ℃, respectively. Modeling results and experimental data were compared and a reasonable agreement was observed. It was noticed that 2 and 4 passes multi-directionally forged samples annealed non-isothermally up to 350 ℃ have a lower experimental flow stress in comparison with the flow stress achieved from the model.The underlying reason is that the proposed non-isothermal annealing model is based only on the intragranular dislocation density evolution, which only takes into account recovery and recrystallization phenomena. However, at 350℃ grain growth takes place in addition to recovery and recrystallization,which is the source of discrepancy between the modeling and experimental flow stress.展开更多
BACKGROUND Radiocarpal dislocations are rare but potentially devastating injuries.Poorer outcomes are associated with inadequate or lost reduction,such as ulnar translocation,but no consensus exists on the ideal fixat...BACKGROUND Radiocarpal dislocations are rare but potentially devastating injuries.Poorer outcomes are associated with inadequate or lost reduction,such as ulnar translocation,but no consensus exists on the ideal fixation technique.Dorsal bridge plate fixation has been described for various settings in the treatment of complex distal radius fractures and can be fixed distally to the second or third metacarpal,but its application for radiocarpal dislocations has not been established.AIM To determine whether distal fixation to the second or third metacarpal matters.METHODS Using a cadaveric radiocarpal dislocation model,the effect of distal fixation was studied in two stages:(1)A pilot study that investigated the effect of distal fixation alone;and(2)a more refined study that investigated the effect of described techniques for distal and proximal fixation.Radiographs were measured in various parameters to determine the quality of the reduction achieved.RESULTS The pilot study found that focusing on distal fixation alone without changing proximal fixation results in ulnar translocation and volar subluxation when fixing distally to the second metacarpal compared with the third.The second iteration demonstrated that anatomic alignment in coronal and sagittal planes could be achieved with each technique.CONCLUSION In a cadaveric radiocarpal dislocation model,anatomic alignment can be maintained with bridge plate fixation to the second metacarpal or the third metacarpal if the described technique is followed.When considering dorsal bridge plate fixation for radiocarpal dislocations,the surgeon is encouraged to understand the nuances of different fixation techniques and how implant design features may influence proximal placement.展开更多
Crystal growth is a complicated phase transition process.A perfect mechanism for practical crystal growth process has not been proposed and well recognized up till now.A model,i.e.screw dislocation model presented by ...Crystal growth is a complicated phase transition process.A perfect mechanism for practical crystal growth process has not been proposed and well recognized up till now.A model,i.e.screw dislocation model presented by F.C.Frank for imperfect crystal growth was adopted during early 1950’s.No systemic research on defects other than screw dislocation has been conducted during a quite long time. Since 1980’s,we have engaged systematically in the investigation of the defect mechanism of crystal growth,and our conclusion is that any defect providing step sources in the growing surface can make contribution to continuous crystal growth.These steps contain both complete(whole)steps and sub steps(incomplete steps).展开更多
Nix and Gao established an important relation between the microindentation hardness and indentation depth. Such a relation has been verified by many microindentation experiments (indentation depths in the micrometer ...Nix and Gao established an important relation between the microindentation hardness and indentation depth. Such a relation has been verified by many microindentation experiments (indentation depths in the micrometer range), but it does not always hold in nanoindentation experiments (indentation depths approaching the nanometer range). Indenter tip radius effect has been proposed by Qu et al. and others as possibly the main factor that causes the deviation from Nix and Gao's relationship. We have developed an indentation model for micro- and nanoindentation, which accounts for two indenter shapes, a sharp, conical indenter and a conical indenter with a spherical tip. The analysis is based on the conventional theory of mechanism-based strain gradient plasticity established from the Taylor dislocation model to account for the effect of geometrically necessary dislocations. The comparison between numerical result and Feng and Nix's experimental data shows that the indenter tip radius effect indeed causes the deviation from Nix-Gao relation, but it seems not be the main factor.展开更多
Near-fault strong ground motion of strike-slip and dip-slip of vertical and inclined rectangular fault in half-space and layered half-space is analyzed by dislocation source model. The Fourier spectra ratio of ground ...Near-fault strong ground motion of strike-slip and dip-slip of vertical and inclined rectangular fault in half-space and layered half-space is analyzed by dislocation source model. The Fourier spectra ratio of ground motion is adopted to study the characteristics of near-fault ground motion. For both slip models, near-fault strong ground motion with high amplitude is located in a narrow belt area along the projection of the fault on the ground and mainly controlled by the sub-faults nearby. Directivity of strike-slip fault is more dominant in long period for components perpendicular to the fault, and more dominant in long period for components parallel to the fault for dip-slip fault. The deeper the location of the source is, the more slowly the amplitude of ground motion attenuates. There is obvious hanging wall effect in ground motion of inclined fault, and the spatial distribution of ground motion is asymmetric which coincides with observational data. Finally, a fitting function of spatial distribution for near-fault ground motion is proposed and compared with near source factors of the 1997 Uniform Building Code of USA.展开更多
Co-seismic displacements associated with the Mw9.0 earthquake on March 11, 2011 in Japan are numerically simulated on the basis of a finite-fault dislocation model with PSGRN/PSCMP software. Compared with the inland G...Co-seismic displacements associated with the Mw9.0 earthquake on March 11, 2011 in Japan are numerically simulated on the basis of a finite-fault dislocation model with PSGRN/PSCMP software. Compared with the inland GPS observation, 90% of the computed eastward, northward and vertical displacements have residuals less than 0.10 m, suggesting that the simulated results can be, to certain extent, used to demon- strate the co-seismic deformation in the near field. In this model, the maximum eastward displacement increa- ses from 6 m along the coast to 30 m near the epicenter, where the maximum southward displacement is 13 m. The three-dimensional display shows that the vertical displacement reaches a maximum uplift of 14.3 m, which is comparable to the tsunami height in the near-trench region. The maximum subsidence is 5.3 m.展开更多
Large earthquakes cause observable changes in the Earth’s gravity field, which have been detected by the Gravity Recovery and Climate Experiment (GRACE). Since most previous studies focus on the detection of near-fie...Large earthquakes cause observable changes in the Earth’s gravity field, which have been detected by the Gravity Recovery and Climate Experiment (GRACE). Since most previous studies focus on the detection of near-field gravity effects, this study provides the results from the medium- to far-field gravity changes caused by the 2004 Sumatra-Andaman earthquake that are recorded within GRACE monthly solutions. Utilizing a spherical-earth dislocation model we documented that large-scale signals predominate in the global field of the coseismic gravity changes caused by the earthquake. After removing the near-field effects, the coseismic gravity changes show a negative anomaly feature with an average magnitude of -0.18×10-8 m·s-2 in the region ranging ~40° from the epicenter, which is considered as the 'medium ffield' in this study. From the GRACE data released by Center for Space Research from August 2002 to December 2008, we retrieved the large-scale gravity changes smoothed with 3 000 km Gaussian ffilter. The results show that the coseismic gravity changes detected by GRACE in the medium field have an average of (-0.20±0.06)×10-8 m·s-2, which agrees with the model prediction. The detection confirms that GRACE is sensitive to large-scale medium-field coseismic gravitational effects of mega earthquakes, and also validates the spherical-earth dislocation model in the medium field from the perspective of satellite gravimetry.展开更多
Making use of observation data of GPS in the Northwest China region and infrared distancemeasurements crossing the Qilian-Longshoushan fault zone up to 2004, aided by the least square collocation and inversion of nega...Making use of observation data of GPS in the Northwest China region and infrared distancemeasurements crossing the Qilian-Longshoushan fault zone up to 2004, aided by the least square collocation and inversion of negative dislocation model for the boundaries of elastic blocks and the singular force-source, the dynamic evolution features of deformation and strain fields before and after the Ms = 8. 1 earthquake on the west of Kunlun Mountains Pass, especially the recent tectonic deformation and stress field status three years after this earthquake are studied. The possible regions or segments of active blocks and their boundaries reflecting accumulation background of high strain energy of producing earthquakes over middle magnitude, are obtained, as well as the potential epicenter. The results show that after shortterm relaxation and adjustment in the northern margin of Qinghai-Xizang (Tibet) block after the Ms = 8. 1 earthquake, the main control action of background field of northeastward pushing of Indian plate is now recovering. Moreover, the following regions are found to have the background of high strain energy accumulation. They are the middle segment of the northern Tianshan fault zone and its meeting region with the western segment, the middle and western segments of southern Tianshan fault zone and the meeting region with Western Kunlun fault zone, the middle segment of Altun fault, the middle-eastern segment of Qilianshan fault zone and its meeting region with Haiyuan fault, the meeting region of northern margin fault of west Qinling Range and the southeastward expanding line of Zhuanglanghe fault; The Linze and Haiynan areas also see accumulation of strain energy to some degree.展开更多
By using the Yoshimitsu Okada and Steketee fault dislocation model,we calculated the vertical and horizontal displacements along the Yingxiu-Beichuan inverse fault and Guanxian-Anxian inverse fault along which the Wen...By using the Yoshimitsu Okada and Steketee fault dislocation model,we calculated the vertical and horizontal displacements along the Yingxiu-Beichuan inverse fault and Guanxian-Anxian inverse fault along which the Wenchuan MS8. 0 earthquake occurred in 2008. Compared to the achievements of field surveying along the surface rupture zone,we found that our computational results are comparable to the real displacement variation trend. Furthermore,the computational results indicated that the surface displacement fields vary with the distance from the fault,and the vertical displacement fields show strong inhomogeneity,in which larger displacement is focused on the ends of the fault. However, in contrast to the vertical displacement,the horizontal displacement shows relative uniformity in space.展开更多
Using GPS observations of horizontal movement from 2001 to 2003 and the cross-fault mobile short-levelling data of 1988~2003, and with the aid of the improved negative dislocation model and the time-varying curve of ...Using GPS observations of horizontal movement from 2001 to 2003 and the cross-fault mobile short-levelling data of 1988~2003, and with the aid of the improved negative dislocation model and the time-varying curve of strain intensity ratio of fault deformation, the regional tectonic deformation background and medium- and short-term precursors related to the preparation of the Minle-Shandan earthquakes of M S6.1 and M S5.8 on October 25, 2003 are investigated. The results reveal that, under the background of the wide-range deformation adjustment, short-term relaxation and recovery caused by the Kunlun Mountains earthquake of M S8.1, the hypocenters of the earthquakes are located on the north edge of the shear stress enhancement zone between the compressional locked segments of block boundary fault, a place which may represent an accelerated strain accumulation. An obvious anomaly of strain intensity ratio appeared in short-levelling measurements crossing over the fault at the Shihuiyaokou site, the closest to the epicenters, 3 months before the occurrence of the earthquakes. In addition, the variation in number of anomalies from 10-odd days to months before the earthquakes in the entire monitoring area and the anomaly concentration and local enhancement relative to near source in the 3 months before the earthquakes are regarded to be precursors to the two events.展开更多
基金State Key Basic Development and Programming Project Mechanism and Prediction of Continental Strong Earthquakes (G1998040703) Joint Seismological Science Foundation of China (603001).
文摘Through numerical simulation for GPS data, aseismic negative dislocation model for crustal horizontal movement during 1999~2001 in the northeast margin of Qinghai-Xizang block is presented, combined with the spatial distribution of apparent strain field in this area, the characteristics of motion and deformation of active blocks and their boundary faults, together with the place and intensity of strain accumulation are analyzed. It is shown that: a) 9 active blocks appeared totally clockwise motion from eastward by north to eastward by south. Obvious sinistral strike-slip and NE-NEE relative compressive motion between the blocks separated by Qilianshan-Haiyuan fault zone was discovered; b) 20 fault segments (most of them showed compression) locked the relative motion between blocks to varying degrees, among the total, the mid-east segment of Qilianshan fault (containing the place where it meets Riyueshan-Lajishan fault) and the place where it meets Haiyuan fault and Zhuanglanghe fault, more favored accumulation of strain. Moreover, the region where Riyueshan-Lajishan fault meets north boundary of Qaidam block may have strain accumulation to some degree. c) Obtained magnitude of block velocities and locking of their boundaries were less than relevant results for observation in the period of 1993~1999.
基金Joint Seismological Science Foundation of China (No.101005).
文摘The methods were discussed to calculate the gravity variation due to crustal deformation based on a model of dis-location on a finite rectangular plane. Taking the Lijiang MS=7.0 earthquake as an example the calculating princi-ple of fault parameters were determined, and the results were given. Of particular interests were the characteristics of the gravity variations in different dislocation types. With comparison between the calculated results and the practical measurements, it was found that the model could to some extent account for the observations. But it failed to give explanations to the more far spatial gravity variation.
文摘By using molecular dynamics computer simulation at atomic level, the effects of single dislocation and dipole dislocations on nucleation and growth of martensitic transformation have been studied. It was found that only the location of tension or compression stress fields of the dislocations are favorable for martensite nucleation in NiAl alloy and the dislocations can move to accommodate partly the transformation strain during the nucleation and growth of martensite. Combined with the molecular dynamics simulation, a two dimensional simulation for martensite morphology based on a dislocation model has been performed. Many factors related to martensitic transformation were considered, such as supercooling, interface energy, shear strain, normal strain and hydrostatic pressure. Different morphologies of martensites, similar to lath, lenticular, thin plate, couple-plate and lenticular couple-plate martensites observed in Fe-C and Fe-Ni-C alloys, were obtained.
文摘Theoretical analysis and practical observations show that fault dislocations can change the gravity field around the fault. Gravity changes which were caused by the repeated dislocations over a long period of time were superimposed on the Bougeur gravity anomalies. These anomalies became the evidence of historical movement of fault as well as provide a way for the study of paleo earthquakes. This paper investigates inversion methods for the geological dislocation modeling of faults using the local Bouguer's gravity anomalies. To remove the effects of the irrelevant part of gravity anomalies to fault movements, we propose the robust nonlinear inversion method and set up the corresponding algorithm. Modeling examples indicate that the Marquardt's and Baye's least squares solutions depart from the true solution due to the attraction of gross errors in the data. The more seriously the data is contaminated, the more seriously the solutions are biased. In contrast, the proposed robust Marquardt's and Baye's inversion solutions can still maintain consistency with the solution without gross errors, even though 50 percent of the data is contaminated. This indicates that the proposed robust methods are effective. Using the proposed methods, we invert the geological dislocation models of the faults around the Erhai Lake in West Yunnan. The results show that the Northern Cangdong fault and the Erhai fault are normal dip slip faults with about 4 to 5 km dislocations; and that the Southern Cangdong fault has a less dip slip compared with the former two. A satisfactory fitting between the theoretical values of the inversion solution and the actual local gravity field is achievable.
文摘The propagation for the model I crack in aluminum single crystal has been directly studied by in-situ TEM observation.The equation of energy barrier of the dislocation building-up and emission at the model I crack tip has been established by means of Peierls-Nabarro dislocation model and starting from angle of energy.By means of calculation,the critical value of spontaneous emission of the dislocations from tip of the model I crack was obtained.
基金Project(51675465)supported by the National Natural Science Foundation of ChinaProject(E2019203075)supported by the Natural Science Foundation of Hebei Province,China+1 种基金Project(BJ2019001)supported by the Top Young Talents Project of the Education Department of Hebei Province,ChinaProject(Kfkt2017-07)supported by the State Key Laboratory Program of High Performance Complex Manufacturing,China。
文摘The microstructure evolution of 7A85 aluminum alloy at the conditions of strain rate(0.001−1 s^(−1))and deformation temperature(250−450°C)was studied by optical microscopy(OM)and electron back scattering diffraction(EBSD).Based on the K-M dislocation density model,a two-stage K-M dislocation density model of 7A85 aluminum alloy was established.The results reveal that dynamic recovery(DRV)and dynamic recrystallization(DRX)are the main mechanisms of microstructure evolution during thermal deformation of 7A85 aluminum alloy.350−400°C is the transformation zone from dynamic recovery to dynamic recrystallization.At low temperature(≤350°C),DRV is the main mechanism,while DRX mostly occurs at high temperature(≥400°C).At this point,the sensitivity of microstructure evolution to temperature is relatively high.As the temperature increased,the average misorientation angle(θˉ_(c))increased significantly,ranging from 0.93°to 7.13°.Meanwhile,the f_(LAGBs) decreased with the highest decrease of 24%.
文摘The chaotic behaviour of dislocation multiplication process was investigated. The change of Lyapunov exponent which is used to determine the stability of quasi-periodic and chaotic behavior as well as that of equilibrium points, and periodic solution was reported by using an iteration model of dislocation multiplication. An unusual behavior of Lyapunov exponent and Feigenbaum exponent which respond to the geometric convergence of orbit from bifurcation to chaos was shown by dislocation velocity exponent m and there is a distinction on the tendency of convergence for the dislocation multiplication model when it was compared with logistic map. It is reasonable for the difference to be analyzed from the materials viewpoint. (Edited author abstract) 9 Refs.
基金The project supported by the National Natural Science Foundation of China(20020003023)the Ministry of Education(key grant 0306)
文摘A continuum model of solids with cylindrical microvoids is proposed based on the Taylor dislocation model. The model is an extension of Gurson model in the sense that the void size effect is accounted for. Beside the void volume fraction f, the intrinsic material length l becomes a parameter representing voids since the void size comes into play in the Gurson model. Approximate yield functions in analytic forms are suggested for both solids with cylindrical microvoids and with spherical microvoids. The application to uniaxial tension curves shows a precise agreement between the approximate analytic yield function and the exact parametric form of integrals.
基金Joint Seismological Science Foundation (603001)Project of China Earthquake Administration during the tenth five-year (100501-04).
文摘On the basis of the velocity field results of horizontal crustal movement obtained from GPS measurements during the periods of 1993-1999, 1999-2001 and 2001-2003 in the northeastern margin of Qinghai-Xizang block, and by the inversion of negative dislocation model for the elastic block boundaries, we provide in this paper a qualitative analysis and quantitative description for the difference of motion and deformation between the tectonic blocks and their boundary faults, time-space distribution of tectonic strain field, and locations with highly accumulated strain energy and correlative intensity. Furthermore, taking the regional tectonics and block strain into full consideration, we investigate the common features of background precursors relating to location prediction for M greater than or equal 6 earthquakes.
文摘The Second Crustal Deformation Monitoring Center, China Seismological Bureau, has detected a marked uplift associated with the Gonghe Ms=7.0 earthquake on April 26, 1990, Qinghai Province. From the observed vertical deformations and using a rectangular uniform slip model in a homogeneous elastic half space, we first employ genetic algorithms (GA) to infer the approximate global optimal solution, and further use least squares method to get more accurate global optimal solution by taking the approximate solution of GA as the initial parameters of least squares. The inversion results show that the causative fault of Gonghe Ms=7.0 earthquake is a right-lateral reverse fault with strike NW60°, dip SW and dip angle 37°, the coseismic fracture length, width and slip are 37 km, 6 km and 2.7 m respectively. Combination of GA and least squares algorithms is an effective joint inversion method, which could not only escape from local optimum of least squares, but also solve the slow convergence problem of GA after reaching adjacency of global optimal solution.
基金the research board of Sharif University of Technology, Iran, for the financial support and provision of the research facilities used for this work
文摘In order to investigate the evolution of microstructure and flow stress during non-isothermal annealing,aluminum samples were subjected to strain magnitudes of 1, 2 and 3 by performing 2, 4 and 6 passes of multi-directional forging. Then, the samples were non-isothermally annealed up to 150, 200, 250, 300 and 350 ℃. The evolution of dislocation density and flow stress was studied via modeling of deformation and annealing stages. It was found that 2, 4 and 6 passes multi-directionally forged samples show thermal stability up to temperatures of 250, 250 and 300 ℃, respectively. Modeling results and experimental data were compared and a reasonable agreement was observed. It was noticed that 2 and 4 passes multi-directionally forged samples annealed non-isothermally up to 350 ℃ have a lower experimental flow stress in comparison with the flow stress achieved from the model.The underlying reason is that the proposed non-isothermal annealing model is based only on the intragranular dislocation density evolution, which only takes into account recovery and recrystallization phenomena. However, at 350℃ grain growth takes place in addition to recovery and recrystallization,which is the source of discrepancy between the modeling and experimental flow stress.
文摘BACKGROUND Radiocarpal dislocations are rare but potentially devastating injuries.Poorer outcomes are associated with inadequate or lost reduction,such as ulnar translocation,but no consensus exists on the ideal fixation technique.Dorsal bridge plate fixation has been described for various settings in the treatment of complex distal radius fractures and can be fixed distally to the second or third metacarpal,but its application for radiocarpal dislocations has not been established.AIM To determine whether distal fixation to the second or third metacarpal matters.METHODS Using a cadaveric radiocarpal dislocation model,the effect of distal fixation was studied in two stages:(1)A pilot study that investigated the effect of distal fixation alone;and(2)a more refined study that investigated the effect of described techniques for distal and proximal fixation.Radiographs were measured in various parameters to determine the quality of the reduction achieved.RESULTS The pilot study found that focusing on distal fixation alone without changing proximal fixation results in ulnar translocation and volar subluxation when fixing distally to the second metacarpal compared with the third.The second iteration demonstrated that anatomic alignment in coronal and sagittal planes could be achieved with each technique.CONCLUSION In a cadaveric radiocarpal dislocation model,anatomic alignment can be maintained with bridge plate fixation to the second metacarpal or the third metacarpal if the described technique is followed.When considering dorsal bridge plate fixation for radiocarpal dislocations,the surgeon is encouraged to understand the nuances of different fixation techniques and how implant design features may influence proximal placement.
文摘Crystal growth is a complicated phase transition process.A perfect mechanism for practical crystal growth process has not been proposed and well recognized up till now.A model,i.e.screw dislocation model presented by F.C.Frank for imperfect crystal growth was adopted during early 1950’s.No systemic research on defects other than screw dislocation has been conducted during a quite long time. Since 1980’s,we have engaged systematically in the investigation of the defect mechanism of crystal growth,and our conclusion is that any defect providing step sources in the growing surface can make contribution to continuous crystal growth.These steps contain both complete(whole)steps and sub steps(incomplete steps).
基金The project supported by the National Natural Science Foundation of China (10121202)the Ministry of Education of China (20020003023)
文摘Nix and Gao established an important relation between the microindentation hardness and indentation depth. Such a relation has been verified by many microindentation experiments (indentation depths in the micrometer range), but it does not always hold in nanoindentation experiments (indentation depths approaching the nanometer range). Indenter tip radius effect has been proposed by Qu et al. and others as possibly the main factor that causes the deviation from Nix and Gao's relationship. We have developed an indentation model for micro- and nanoindentation, which accounts for two indenter shapes, a sharp, conical indenter and a conical indenter with a spherical tip. The analysis is based on the conventional theory of mechanism-based strain gradient plasticity established from the Taylor dislocation model to account for the effect of geometrically necessary dislocations. The comparison between numerical result and Feng and Nix's experimental data shows that the indenter tip radius effect indeed causes the deviation from Nix-Gao relation, but it seems not be the main factor.
基金National Natural Science Foundation of China (59895410), Commonweal Foundation of the Ministry of Science and Technology of China (2001DIB20098).
文摘Near-fault strong ground motion of strike-slip and dip-slip of vertical and inclined rectangular fault in half-space and layered half-space is analyzed by dislocation source model. The Fourier spectra ratio of ground motion is adopted to study the characteristics of near-fault ground motion. For both slip models, near-fault strong ground motion with high amplitude is located in a narrow belt area along the projection of the fault on the ground and mainly controlled by the sub-faults nearby. Directivity of strike-slip fault is more dominant in long period for components perpendicular to the fault, and more dominant in long period for components parallel to the fault for dip-slip fault. The deeper the location of the source is, the more slowly the amplitude of ground motion attenuates. There is obvious hanging wall effect in ground motion of inclined fault, and the spatial distribution of ground motion is asymmetric which coincides with observational data. Finally, a fitting function of spatial distribution for near-fault ground motion is proposed and compared with near source factors of the 1997 Uniform Building Code of USA.
基金supported by the National Natural Science Foundation of China ( 40572125 40872129)
文摘Co-seismic displacements associated with the Mw9.0 earthquake on March 11, 2011 in Japan are numerically simulated on the basis of a finite-fault dislocation model with PSGRN/PSCMP software. Compared with the inland GPS observation, 90% of the computed eastward, northward and vertical displacements have residuals less than 0.10 m, suggesting that the simulated results can be, to certain extent, used to demon- strate the co-seismic deformation in the near field. In this model, the maximum eastward displacement increa- ses from 6 m along the coast to 30 m near the epicenter, where the maximum southward displacement is 13 m. The three-dimensional display shows that the vertical displacement reaches a maximum uplift of 14.3 m, which is comparable to the tsunami height in the near-trench region. The maximum subsidence is 5.3 m.
基金funded in parts by the Natural Science Foundation of China (grant Nos. 40974015, 41128003, 41174011 and41021061)the Open Fund of Key Laboratory of Geo-dynamic Geodesy of Chinese Academy (No. 09-18)the Open Fund of Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, China (No.07-12)
文摘Large earthquakes cause observable changes in the Earth’s gravity field, which have been detected by the Gravity Recovery and Climate Experiment (GRACE). Since most previous studies focus on the detection of near-field gravity effects, this study provides the results from the medium- to far-field gravity changes caused by the 2004 Sumatra-Andaman earthquake that are recorded within GRACE monthly solutions. Utilizing a spherical-earth dislocation model we documented that large-scale signals predominate in the global field of the coseismic gravity changes caused by the earthquake. After removing the near-field effects, the coseismic gravity changes show a negative anomaly feature with an average magnitude of -0.18×10-8 m·s-2 in the region ranging ~40° from the epicenter, which is considered as the 'medium ffield' in this study. From the GRACE data released by Center for Space Research from August 2002 to December 2008, we retrieved the large-scale gravity changes smoothed with 3 000 km Gaussian ffilter. The results show that the coseismic gravity changes detected by GRACE in the medium field have an average of (-0.20±0.06)×10-8 m·s-2, which agrees with the model prediction. The detection confirms that GRACE is sensitive to large-scale medium-field coseismic gravitational effects of mega earthquakes, and also validates the spherical-earth dislocation model in the medium field from the perspective of satellite gravimetry.
基金The research was sponsored bythe 10th"Five-Year Plan"keyresearch program of short-term earthquake prediction of CEA (2004BA601B01-01-03) the 11th"Five-YearPlan"key research programof earthquake prediction(preparatory research) .
文摘Making use of observation data of GPS in the Northwest China region and infrared distancemeasurements crossing the Qilian-Longshoushan fault zone up to 2004, aided by the least square collocation and inversion of negative dislocation model for the boundaries of elastic blocks and the singular force-source, the dynamic evolution features of deformation and strain fields before and after the Ms = 8. 1 earthquake on the west of Kunlun Mountains Pass, especially the recent tectonic deformation and stress field status three years after this earthquake are studied. The possible regions or segments of active blocks and their boundaries reflecting accumulation background of high strain energy of producing earthquakes over middle magnitude, are obtained, as well as the potential epicenter. The results show that after shortterm relaxation and adjustment in the northern margin of Qinghai-Xizang (Tibet) block after the Ms = 8. 1 earthquake, the main control action of background field of northeastward pushing of Indian plate is now recovering. Moreover, the following regions are found to have the background of high strain energy accumulation. They are the middle segment of the northern Tianshan fault zone and its meeting region with the western segment, the middle and western segments of southern Tianshan fault zone and the meeting region with Western Kunlun fault zone, the middle segment of Altun fault, the middle-eastern segment of Qilianshan fault zone and its meeting region with Haiyuan fault, the meeting region of northern margin fault of west Qinling Range and the southeastward expanding line of Zhuanglanghe fault; The Linze and Haiynan areas also see accumulation of strain energy to some degree.
基金sponsored by the Foundation Funds of Institute of Geology,CEA,China (IGCEA0912)
文摘By using the Yoshimitsu Okada and Steketee fault dislocation model,we calculated the vertical and horizontal displacements along the Yingxiu-Beichuan inverse fault and Guanxian-Anxian inverse fault along which the Wenchuan MS8. 0 earthquake occurred in 2008. Compared to the achievements of field surveying along the surface rupture zone,we found that our computational results are comparable to the real displacement variation trend. Furthermore,the computational results indicated that the surface displacement fields vary with the distance from the fault,and the vertical displacement fields show strong inhomogeneity,in which larger displacement is focused on the ends of the fault. However, in contrast to the vertical displacement,the horizontal displacement shows relative uniformity in space.
文摘Using GPS observations of horizontal movement from 2001 to 2003 and the cross-fault mobile short-levelling data of 1988~2003, and with the aid of the improved negative dislocation model and the time-varying curve of strain intensity ratio of fault deformation, the regional tectonic deformation background and medium- and short-term precursors related to the preparation of the Minle-Shandan earthquakes of M S6.1 and M S5.8 on October 25, 2003 are investigated. The results reveal that, under the background of the wide-range deformation adjustment, short-term relaxation and recovery caused by the Kunlun Mountains earthquake of M S8.1, the hypocenters of the earthquakes are located on the north edge of the shear stress enhancement zone between the compressional locked segments of block boundary fault, a place which may represent an accelerated strain accumulation. An obvious anomaly of strain intensity ratio appeared in short-levelling measurements crossing over the fault at the Shihuiyaokou site, the closest to the epicenters, 3 months before the occurrence of the earthquakes. In addition, the variation in number of anomalies from 10-odd days to months before the earthquakes in the entire monitoring area and the anomaly concentration and local enhancement relative to near source in the 3 months before the earthquakes are regarded to be precursors to the two events.