期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Surface Dislocation Nucleation Mediated Deformation and Ultrahigh Strength in Sub-10-nm Gold Nanowires 被引量:4
1
作者 Yang Lu Jun Song +1 位作者 Jian Yu Huang Jun Lou 《Nano Research》 SCIE EI CAS CSCD 2011年第12期1261-1267,共7页
The plastic deformation and the ultrahigh strength of metals at the nanoscale have been predicted to be controlled by surface dislocation nucleation. In situ quantitative tensile tests on individual 〈111〉 single cry... The plastic deformation and the ultrahigh strength of metals at the nanoscale have been predicted to be controlled by surface dislocation nucleation. In situ quantitative tensile tests on individual 〈111〉 single crystalline ultrathin gold nanowires have been performed and significant load drops observed in stress-strain curves suggest the occurrence of such dislocation nucleation. High-resolution transmission electron microscopy (HRTEM) imaging and molecular dynamics simulations demonstrated that plastic deformation was indeed initiated and dominated by surface dislocation nucleation, mediating ultrahigh yield and fracture strength in sub-lO-nm gold nanowires. 展开更多
关键词 NANOWIRES in situ transmission electron microscope (TEM) mechanical characterization dislocation nucleation PLASTICITY
原文传递
Effect of Hydrogen on Dislocation Nucleation and Motion:Nanoindentation Experiment and Discrete Dislocation Dynamics Simulation 被引量:1
2
作者 Jian Wang Lv Zhao +2 位作者 Minsheng Huang Yaxin Zhu Zhenhuan Li 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2022年第1期1-14,共14页
The hydrogen effect on the nucleation and motion of dislocations in single-crystal bcc Fe with(110)surface was investigated by both nanoindentation experiments and discrete dislocation dynamics(DDD)simulation.The resu... The hydrogen effect on the nucleation and motion of dislocations in single-crystal bcc Fe with(110)surface was investigated by both nanoindentation experiments and discrete dislocation dynamics(DDD)simulation.The results of nanoindentation experiments showed that the pop-in load decreased evidently for the electrochemical hydrogen charging specimen,indicating that the dislocation nucleation strength might be reduced by hydrogen.In addition,the decrease of hardness due to hydrogen charging was also captured,implying that the dislocation motion might be promoted by hydrogen.By incorporating the effect of hydrogen on dislocation core energy,a DDD model was specifically proposed to investigate the influence of hydrogen on dislocation nucleation and motion.The results of DDD simulation revealed that under the effect of hydrogen,the dislocation nucleation strength is decreased and the motion of dislocation is promoted. 展开更多
关键词 HYDROGEN NANOINDENTATION Homogeneous dislocation nucleation Discrete dislocation dynamics
原文传递
QUASICONTINUUM SIMULATION OF NANOINDENTATION OF NICKEL FILM
3
作者 Zeng Fanlin Sun Yi 《Acta Mechanica Solida Sinica》 SCIE EI 2006年第4期283-288,共6页
A large-scale atom simulation of nanoindentation into a thin nickel film using the quasicontinuum method was performed. The initial stages of the plasticity deformation of nickel were studied. Several useful results w... A large-scale atom simulation of nanoindentation into a thin nickel film using the quasicontinuum method was performed. The initial stages of the plasticity deformation of nickel were studied. Several useful results were obtained as follows: (1) The response of the load versus indentation depth on the load versus indentation depth curve, besides the straight parts corresponding to the elastic property of nickel, the sudden drop of the load occurred several times; (2) The phenomena of dislocation nucleation -- the dislocation nucleation took place when the load descended, which makes it clear that dislocation nucleation causes the drop of the load; (3) The mechanism of the dislocation emission - the Peierls-Nabarro dislocation model and a pow- erful criterion were used to analyze the dislocation emission. And the computational value was in good agreement with the predict value; (4) The density of geometrically necessary dislocations. A simple model was used to obtain the density of geometrically necessary dislocations beneath the indenter. Furthermore, the influence of the boundary conditions on the simulation results was discussed. 展开更多
关键词 quasicontinuum method NANOINDENTATION dislocation nucleation density of geometrically necessary dislocation
下载PDF
Size and strain rate effects in tensile strength of penta-twinned Ag nanowires 被引量:4
4
作者 Xuan Zhang Xiaoyan Li Huajian Gao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第4期792-800,共9页
Penta-twinned Ag nanowires(pt-AgNWs) have recently attracted much attention due to their interesting mechanical and physical properties. Here we perform largescale atomistic simulations to investigate the influence ... Penta-twinned Ag nanowires(pt-AgNWs) have recently attracted much attention due to their interesting mechanical and physical properties. Here we perform largescale atomistic simulations to investigate the influence of sample size and strain rate on the tensile strength of pt-AgNWs. The simulation results show an apparent size effect in that the nanowire strength(defined as the critical stress for dislocation nucleation) increases with decreasing wire diameter. To account for such size effect, a theoretical model involving the interaction between an emerging dislocation and the twin boundary has been developed for the surface nucleation of dislocations. It is shown that the model predictions are in quantitative agreement with the results from atomistic simulations and previous experimental studies in the literatures. The simulations also reveal that nanowire strength is strain-rate dependent, which predicts an activation volume for dislocation nucleation in the range of 1–10b^3,where b is the magnitude of the Burgers vector for a full dislocation. 展开更多
关键词 nucleation tensile dislocation modulus apparent diameters decreasing magnitude crystalline penta
下载PDF
In situ nanomechanical characterization of hydrogen effects on nickel-based alloy 725 under different metallurgical conditions
5
作者 Xu Lu Yan Ma +2 位作者 Ding Peng Roy Johnsen Dong Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第4期156-169,共14页
The effect of hydrogen on the surface morphology and nanomechanical properties of Ni-based Alloy 725 under solution-annealed(SA)and precipitation-hardened(API)conditions was thoroughly studied.The investigation involv... The effect of hydrogen on the surface morphology and nanomechanical properties of Ni-based Alloy 725 under solution-annealed(SA)and precipitation-hardened(API)conditions was thoroughly studied.The investigation involved in situ nanoindentation testing,microscopy characterization,statistical analy-sis,and numerical simulation approaches.The results showed the distinctive effects of hydrogen on the pop-in and hardness in the SA and API samples.For the SA sample,hydrogen mainly dissolved as solid solute in the matrix,causing enhanced lattice friction on the dislocation motion and increasing the in-ternal stress via lattice expansion.Thus,an enhanced hardness,a reduced pop-in width/load ratio,and numerous surface steps were detected in the presence of hydrogen.For the API sample,the strengtheningγ″phases were the stress concentrators,and the dislocations nucleated heterogeneously,demonstrating indistinctive pop-in phenomena.Furthermore,the precipitates in the API sample affected the trapping be-havior of hydrogen,thereby resulting in the hardness change,which reflected the competition between solution hardening in the matrix and vacancy softening mechanism in precipitates. 展开更多
关键词 HYDROGEN Nickel-based alloy In situ nanoindentation PRECIPITATES dislocation nucleation HARDNESS
原文传递
Optimization-Based String Method for Finding Minimum Energy Path
6
作者 Amit Samanta Weinan E 《Communications in Computational Physics》 SCIE 2013年第7期265-275,共11页
We present an efficient algorithm for calculating the minimum energy path(MEP)and energy barriers between local minima on a multidimensional potential energy surface(PES).Such paths play a central role in the understa... We present an efficient algorithm for calculating the minimum energy path(MEP)and energy barriers between local minima on a multidimensional potential energy surface(PES).Such paths play a central role in the understanding of transition pathways between metastable states.Our method relies on the original formulation of the string method[Phys.Rev.B,66,052301(2002)],i.e.to evolve a smooth curve along a direction normal to the curve.The algorithm works by performing minimization steps on hyperplanes normal to the curve.Therefore the problem of finding MEP on the PES is remodeled as a set of constrained minimization problems.This provides the flexibility of using minimization algorithms faster than the steepest descent method used in the simplified string method[J.Chem.Phys.,126(16),164103(2007)].At the same time,it provides a more direct analog of the finite temperature string method.The applicability of the algorithm is demonstrated using various examples. 展开更多
关键词 Rare events string method minimum energy path dislocation nucleation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部