The microstructure of crystal defects,e.g.,dislocation patterns,are not arbitrary,and it is possible that some of them may be related to the microstructure of crystals itself,i.e.,the lattice structure.We call those d...The microstructure of crystal defects,e.g.,dislocation patterns,are not arbitrary,and it is possible that some of them may be related to the microstructure of crystals itself,i.e.,the lattice structure.We call those dislocation patterns or substructures that are related to the corresponding crystal microstructure as the Geometrically Compatible Dislocation Patterns(GCDP).Based on this notion,we have developed a Multiscale Crystal Defect Dynamics(MCDD)to model crystal plasticity without or with minimum empiricism.In this work,we employ the multiscale dislocation pattern dynamics,i.e.,MCDD,to simulate crystal plasticity in body-centered cubic(BCC)single crystals,mainlyα-phase Tantalum(α-Ta)single crystals.The main novelties of the work are:(1)We have successfully simulated crystal plasticity at micron scale without any empirical parameter inputs;(2)We have successfully employed MCDD to perform direct numerical simulation of inelastic hysteresis of the BCC crystal;(3)We have used MCDD crystal plasticity model to demonstrate the size-effect of crystal plasticity and(4)We have captured cross-slip which may lead to size-effect.展开更多
Based on the principle given in nonlinear diffusion-reaction dynamics, a new dynamic model for dislocation patterning is proposed by introducing a relaxation time to the relation between dislocation density and disloc...Based on the principle given in nonlinear diffusion-reaction dynamics, a new dynamic model for dislocation patterning is proposed by introducing a relaxation time to the relation between dislocation density and dislocation flux. The so-called chemical potential like quantities, which appear in the model can be derived from variation principle for free energy functional of dislocated media, where the free energy density function is expressed in terms of not only the dislocation density itself but also their spatial gradients. The Linear stability analysis on the governing equations of a simple dislocation density shows that there exists an intrinsic wave number leading to bifurcation of space structure of dislocation density. At the same time, the numerical results also demonstrate the coexistence and transition between different dislocation patterns.展开更多
The effects of the dislocation pattern formed due to the self-organization of the dislocations in crystals on the macroscopic hardening and dynamic internal friction (DIF) during deformation are studied. The classic d...The effects of the dislocation pattern formed due to the self-organization of the dislocations in crystals on the macroscopic hardening and dynamic internal friction (DIF) during deformation are studied. The classic dislocation models for the hardening and DIF corresponding to the homogeneous dislocation configuration are extended to the case for the non-homogeneous one. In addition, using the result of dislocation patterning deduced from the non-linear dlislocation dynamics model for single slip, the correlation between the dislocation pattern and hardening as well as DIF is obtained. It is shown that in the case of the tension with a constant strain rate, the bifurcation point of dislocation patterning corresponds to the turning point in the stress versus strain and DIF versus strain curves. This result along with the critical characteristics of the macroscopic behavior near the bifurcation point is microscopically and macroscopically in agreement with the experimental findings on mono-crystalline pure aluminum at temperatures around 0.5T(m). The present study suggests that measuring the DIF would be a sensitive and useful mechanical means in order to study the critical phenomenon of materials during deformation.展开更多
The growth process of three-dimensional growth mode(3D) switching to two-dimensional growth mode (2D) is investigated when GaN films are grown on cone-shaped patterned sapphire substrates by metal-organic chemical...The growth process of three-dimensional growth mode(3D) switching to two-dimensional growth mode (2D) is investigated when GaN films are grown on cone-shaped patterned sapphire substrates by metal-organic chemical vapor deposition.The growth condition of the 3D-2D growth process is optimized to reduce the threading dislocation density(TDD).It is found that the condition of the 3D layer is critical.The 3D layer keeps growing under the conditions of lowⅤ/Ⅲratio,low temperature,and high pressure until its thickness is comparable to the height of the cone-shaped patterns.Then the 3D layer surrounds the cone-shaped patterns and has inclined side facets and a top(0001) plane.In the following 2D-growth process,inclined side facets coalesce quickly and the interaction of TDs with the side facets causes the TDs to bend over.As a result,the TDD of GaN films can decrease to 1×10~8 cm^(-2),giving full-width at half maximum values of 211 and 219 arcsec for(002) and(102) omega scans, respectively.展开更多
文摘The microstructure of crystal defects,e.g.,dislocation patterns,are not arbitrary,and it is possible that some of them may be related to the microstructure of crystals itself,i.e.,the lattice structure.We call those dislocation patterns or substructures that are related to the corresponding crystal microstructure as the Geometrically Compatible Dislocation Patterns(GCDP).Based on this notion,we have developed a Multiscale Crystal Defect Dynamics(MCDD)to model crystal plasticity without or with minimum empiricism.In this work,we employ the multiscale dislocation pattern dynamics,i.e.,MCDD,to simulate crystal plasticity in body-centered cubic(BCC)single crystals,mainlyα-phase Tantalum(α-Ta)single crystals.The main novelties of the work are:(1)We have successfully simulated crystal plasticity at micron scale without any empirical parameter inputs;(2)We have successfully employed MCDD to perform direct numerical simulation of inelastic hysteresis of the BCC crystal;(3)We have used MCDD crystal plasticity model to demonstrate the size-effect of crystal plasticity and(4)We have captured cross-slip which may lead to size-effect.
基金The National Natural Science Foundation of China,Grant No.19392300
文摘Based on the principle given in nonlinear diffusion-reaction dynamics, a new dynamic model for dislocation patterning is proposed by introducing a relaxation time to the relation between dislocation density and dislocation flux. The so-called chemical potential like quantities, which appear in the model can be derived from variation principle for free energy functional of dislocated media, where the free energy density function is expressed in terms of not only the dislocation density itself but also their spatial gradients. The Linear stability analysis on the governing equations of a simple dislocation density shows that there exists an intrinsic wave number leading to bifurcation of space structure of dislocation density. At the same time, the numerical results also demonstrate the coexistence and transition between different dislocation patterns.
基金The project supported by the National Natural Science Foundation of China under the Grand 19702019 & 19891180-4 the Chinese Academy of Sciences under the Grand KJ951-1-201
文摘The effects of the dislocation pattern formed due to the self-organization of the dislocations in crystals on the macroscopic hardening and dynamic internal friction (DIF) during deformation are studied. The classic dislocation models for the hardening and DIF corresponding to the homogeneous dislocation configuration are extended to the case for the non-homogeneous one. In addition, using the result of dislocation patterning deduced from the non-linear dlislocation dynamics model for single slip, the correlation between the dislocation pattern and hardening as well as DIF is obtained. It is shown that in the case of the tension with a constant strain rate, the bifurcation point of dislocation patterning corresponds to the turning point in the stress versus strain and DIF versus strain curves. This result along with the critical characteristics of the macroscopic behavior near the bifurcation point is microscopically and macroscopically in agreement with the experimental findings on mono-crystalline pure aluminum at temperatures around 0.5T(m). The present study suggests that measuring the DIF would be a sensitive and useful mechanical means in order to study the critical phenomenon of materials during deformation.
文摘The growth process of three-dimensional growth mode(3D) switching to two-dimensional growth mode (2D) is investigated when GaN films are grown on cone-shaped patterned sapphire substrates by metal-organic chemical vapor deposition.The growth condition of the 3D-2D growth process is optimized to reduce the threading dislocation density(TDD).It is found that the condition of the 3D layer is critical.The 3D layer keeps growing under the conditions of lowⅤ/Ⅲratio,low temperature,and high pressure until its thickness is comparable to the height of the cone-shaped patterns.Then the 3D layer surrounds the cone-shaped patterns and has inclined side facets and a top(0001) plane.In the following 2D-growth process,inclined side facets coalesce quickly and the interaction of TDs with the side facets causes the TDs to bend over.As a result,the TDD of GaN films can decrease to 1×10~8 cm^(-2),giving full-width at half maximum values of 211 and 219 arcsec for(002) and(102) omega scans, respectively.