The effects of dislocation configuration, crack blunting and free surfaces on the triggering load of dislocation sources in the vicinity of a crack or a wedge tip subjected to a tensile load in the far field are inves...The effects of dislocation configuration, crack blunting and free surfaces on the triggering load of dislocation sources in the vicinity of a crack or a wedge tip subjected to a tensile load in the far field are investigated. An appropriate triggering criterion for dislocation sources is proposed by considering the configurational forces acting on each dislocation. The triggering behaviors of dislocation sources near the tips of a crack and a wedge are compared. It is also found that the blunting of crack tip and the presence of free surfaces near the crack or the wedge have considerable influences on the triggering load of dislocation sources. This study might be of significance to gaining a deeper understanding of the brittle-to-ductile transition of materials.展开更多
Dislocation behaviour of a twinning-induced plasticity(TWIP)steel subjected to high-cycle fatigue tests is investigated in the present study.Grain boundaries are the important sources of dislocation generation during ...Dislocation behaviour of a twinning-induced plasticity(TWIP)steel subjected to high-cycle fatigue tests is investigated in the present study.Grain boundaries are the important sources of dislocation generation during fatigue tests,contributing to the increase in dislocation density.Continuous emission of dislocations from grain boundaries is observed in many grains.Inclusions can sustain large dislocation pile-ups at the inclusion interfaces,leading to a high stress concentration and therefore acting as potential sites of microcrack nucleation.In contrast,annealing twin boundaries are relatively weak boundaries for dislocation pile-ups.When the number of dislocations in a pile-up is large,dislocations can crossover twin boundaries and glide inside the annealing twins.The stress concentration at the twin boundary is relatively low so that twin boundaries could not act as the sites for microcrack initiation.展开更多
Based on the domain reduction idea and artificial boundary substructure method,this paper proposes an FK-FEM hybrid approach by integrating the advantages of FK and FEM(i.e.,FK can efficiently generate high-frequency ...Based on the domain reduction idea and artificial boundary substructure method,this paper proposes an FK-FEM hybrid approach by integrating the advantages of FK and FEM(i.e.,FK can efficiently generate high-frequency three translational motion,while FEM has rich elements types and constitutive models).An advantage of this approach is that it realizes the entire process simulation from point dislocation source to underground structure.Compared with the plane wave field input method,the FK-FEM hybrid approach can reflect the spatial variability of seismic motion and the influence of source and propagation path.This approach can provide an effective solution for seismic analysis of underground structures under scenario of earthquake in regions where strong earthquakes may occur but are not recorded,especially when active faults,crustal,and soil parameters are available.Taking Daikai subway station as an example,the seismic response of the underground structure is simulated after verifying the correctness of the approach and the effects of crustal velocity structure and source parameters on the seismic response of Daikai station are discussed.In this example,the influence of velocity structure on the maximum interlayer displacement angle of underground structure is 96.5%and the change of source parameters can lead to the change of structural failure direction.展开更多
Based on P- and S-wave amplitudes and some clear initial P-wave motion data, we calculated focal mechanism solutions of 928 M≥2.5 earthquakes (1994-2005) in four sub-blocks of Sichuan and Yunnan Provinces, namely S...Based on P- and S-wave amplitudes and some clear initial P-wave motion data, we calculated focal mechanism solutions of 928 M≥2.5 earthquakes (1994-2005) in four sub-blocks of Sichuan and Yunnan Provinces, namely Sichuan-Qinghai, Yajiang, Central Sichuan and Central Yunnan blocks. Combining these calculation results with those of the focal mechanism solutions of moderately strong earthquakes, we analyzed the stress field characteristics and dislocation types of seismogenic faults that are distributed in the four sub-blocks. The orientation of principal compressive stress for each block is: EW in Sichuan-Qinghai, ESE or SE in Yajiang, Central Sichuan and Central Yunnan blocks. Based on a great deal of focal mechanism data, we designed a program and calculated the directions of the principal stress tensors, σ1, σ2 and σ3, for the four blocks. Meanwhile, we estimated the difference (also referred to as consistency parameter θ^- ) between the force axis direction of focal mechanism solution and the direction of the mean stress tensor of each block. Then we further analyzed the variation of θ^- versus time and the dislocation types of seismogenic faults. Through determination of focal mechanism solutions for each block, we present information on the variation in θ^- value and dislocation types of seismogenic faults.展开更多
基金Project supported by the National Nature Science Foundation of China(Nos.10572067,10525210 and 10121202).
文摘The effects of dislocation configuration, crack blunting and free surfaces on the triggering load of dislocation sources in the vicinity of a crack or a wedge tip subjected to a tensile load in the far field are investigated. An appropriate triggering criterion for dislocation sources is proposed by considering the configurational forces acting on each dislocation. The triggering behaviors of dislocation sources near the tips of a crack and a wedge are compared. It is also found that the blunting of crack tip and the presence of free surfaces near the crack or the wedge have considerable influences on the triggering load of dislocation sources. This study might be of significance to gaining a deeper understanding of the brittle-to-ductile transition of materials.
文摘Dislocation behaviour of a twinning-induced plasticity(TWIP)steel subjected to high-cycle fatigue tests is investigated in the present study.Grain boundaries are the important sources of dislocation generation during fatigue tests,contributing to the increase in dislocation density.Continuous emission of dislocations from grain boundaries is observed in many grains.Inclusions can sustain large dislocation pile-ups at the inclusion interfaces,leading to a high stress concentration and therefore acting as potential sites of microcrack nucleation.In contrast,annealing twin boundaries are relatively weak boundaries for dislocation pile-ups.When the number of dislocations in a pile-up is large,dislocations can crossover twin boundaries and glide inside the annealing twins.The stress concentration at the twin boundary is relatively low so that twin boundaries could not act as the sites for microcrack initiation.
基金supported by Open Foundation of National Engineering Laboratory for High Speed Railway Construction(No.HSR202006)National Natural Science Foundation of China(Grant Nos.52178495,52078498).
文摘Based on the domain reduction idea and artificial boundary substructure method,this paper proposes an FK-FEM hybrid approach by integrating the advantages of FK and FEM(i.e.,FK can efficiently generate high-frequency three translational motion,while FEM has rich elements types and constitutive models).An advantage of this approach is that it realizes the entire process simulation from point dislocation source to underground structure.Compared with the plane wave field input method,the FK-FEM hybrid approach can reflect the spatial variability of seismic motion and the influence of source and propagation path.This approach can provide an effective solution for seismic analysis of underground structures under scenario of earthquake in regions where strong earthquakes may occur but are not recorded,especially when active faults,crustal,and soil parameters are available.Taking Daikai subway station as an example,the seismic response of the underground structure is simulated after verifying the correctness of the approach and the effects of crustal velocity structure and source parameters on the seismic response of Daikai station are discussed.In this example,the influence of velocity structure on the maximum interlayer displacement angle of underground structure is 96.5%and the change of source parameters can lead to the change of structural failure direction.
基金National Key Basic Research Development and Programming Project (2004CB418404) and Joint Seismological Science Foundation (105004).
文摘Based on P- and S-wave amplitudes and some clear initial P-wave motion data, we calculated focal mechanism solutions of 928 M≥2.5 earthquakes (1994-2005) in four sub-blocks of Sichuan and Yunnan Provinces, namely Sichuan-Qinghai, Yajiang, Central Sichuan and Central Yunnan blocks. Combining these calculation results with those of the focal mechanism solutions of moderately strong earthquakes, we analyzed the stress field characteristics and dislocation types of seismogenic faults that are distributed in the four sub-blocks. The orientation of principal compressive stress for each block is: EW in Sichuan-Qinghai, ESE or SE in Yajiang, Central Sichuan and Central Yunnan blocks. Based on a great deal of focal mechanism data, we designed a program and calculated the directions of the principal stress tensors, σ1, σ2 and σ3, for the four blocks. Meanwhile, we estimated the difference (also referred to as consistency parameter θ^- ) between the force axis direction of focal mechanism solution and the direction of the mean stress tensor of each block. Then we further analyzed the variation of θ^- versus time and the dislocation types of seismogenic faults. Through determination of focal mechanism solutions for each block, we present information on the variation in θ^- value and dislocation types of seismogenic faults.
基金This work was supported by Collaborative Innovation Center of Suzhou Nano Science and Technology,the National Basic Research Program of China (No.2014CB932700),National Natural Science Foundation of China (Nos.21573206,51371164,and 51132007),Strategic Priority Research Program B of the CAS (No.XDB01020000),Hefei Science Center CAS (No.2015HSC-UP016),and Fundamental Research Funds for the Central Universities.